Journal of Physical Chemistry B, Vol.109, No.18, 8587-8591, 2005
Photochromism of spiropyran nanocrystals embedded in sol-gel matrices
Spectroscopic and kinetic properties of a new photochromic medium, consisting of nanocrystals of spyropyran molecules (1,3-dihydro-1,3,3,5',6',pentamethyl-spiro[2H-indole-2,2'-[2H]pyrano [3,2-b]pyridinium] iodide) embedded in an organo-silicate sol-gel film, are presented and compared to microcrystals obtained by slow evaporation of a solvent. High photoconversion efficiencies for both kinds of crystals have been observed. In microcrystals, the photomerocyanine form absorbs at 570 nm with a fading rate of 5 h, in nanocrystals the photomerocyanine form absorbs at 535 nm with a fading rate of 41 h. Therefore, the crystalline structure of nanocrystals is different from the microcrystal one.