Catalysis Letters, Vol.101, No.1-2, 5-13, 2005
Optimization of synthesis variables in the preparation of active sulfated zirconia catalysts
The synthesis of a series of sulfated zirconia catalysts was optimized using the isomerization of n-butane as a reaction probe. The normality of the H2SO4 solution used in the sulfation step was found to be the most important variable. A systematic change in the concentration of the H2SO4 solution showed that the optimum acid concentration was 0.25 N. When a catalyst prepared with this acid concentration was used, the conversion of n-butane at 200 degrees C was 35% at 5 min t-o-s. This was close to the thermodynamic equilibrium value of 56% conversion. This maximum was coincident with a catalyst with the highest specific surface area. An increase in the concentration of the H2SO4 solution above 0.25 N resulted in a decrease in both surface area and zirconia crystallinity. XPS studies showed a linear relationship between the H2SO4 solution concentration and the surface sulfur concentration. Bulk concentrations were determined by elemental analysis. The surface area increased to a maximum for a H2SO4 concentration of 0.25 N, while the concentration of bulk sulfur continued to increase when the acid concentration was progressively increased to 2.00 N. The use of a mordenite trap in the reactant stream resulted in an increase in n-butane conversion and a decrease in the rate of catalyst deactivation. XPS studies showed that the sulfur was present as sulfate species and that the oxidation state was not affected by the reaction.