화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.22, No.3, 452-456, May, 2005
Prediction of the Infinite-dilution Partial Molar Volumes of Organic Solutes in Supercritical Carbon Dioxide Using the Kirkwood-Buff Fluctuation Integral with the Hard Sphere Expansion (HSE) Theory
E-mail:
Two thermodynamic models were used to predict the infinite dilution partial molar volumes (PMVs) of organic solutes in supercritical carbon dioxide: (1) the Kirkwood Buff fluctuation integral with the hard sphere expansion (HSE) theory incorporated (KB-HSE fluctuation integral method) and (2) the Peng-Robinson equation of state with the classical mixing rule. While an equation of state only for pure supercritical carbon dioxide is needed in the KB-HSE fluctuation integral model, and thus, there is no need to know the critical properties of solutes, two molecular parameters (one size parameter σ12 and one dimensionless parameter α12) in the KB-HSE fluctuation integral model are determined to fit the experimental data published on the infinite dilution PMVs of solutes. The KB-HSE fluctuation integral method produced better results on the infinite dilution PMVs of eight organic solutes tested in this work than the Peng-Robinson equation of state with the classical mixing rule.
  1. Bader MSH, Gasem KAM, J. Supercrit. Fluids, 9(4), 244 (1996) 
  2. Bartle KD, Clifford AA, Shilstone GF, J. Supercrit. Fluids, 5, 220 (1992) 
  3. Bharath R, Inomata H, Arai K, Fluid Phase Equilib., 50, 315 (1989) 
  4. Brennecke JF, Eckert CA, AIChE J., 35, 1409 (1989) 
  5. Ben-Naim A, J. Chem. Phys., 67, 4884 (1977) 
  6. Camahan NF, Starling KE, J. Chem. Phys., 51, 635 (1969) 
  7. Chialvo AA, J. Phys. Chem., 97, 2740 (1993) 
  8. Cochran HD, Lee LL, Pfund DM, Fluid Phase Equilib., 34, 219 (1987) 
  9. Coutsikos P, Magoulas K, Tassios D, Cortesi A, Kikic I, J. Supercrit. Fluids, 11(1), 21 (1997) 
  10. Debenedetti PG, Chem. Eng. Sci., 42, 2203 (1987) 
  11. Foster NR, Macnaughton SJ, Chaplin RP, Wells PT, Ind. Eng. Chem. Res., 28, 2903 (1989)
  12. Jeon YP, Roth M, Kwon YJ, J. Phys. Chem. B, 103(38), 8132 (1999) 
  13. Jeon YP, Roth M, Kwon YJ, J. Phys. Chem. A, 104(22), 5396 (2000) 
  14. Kim H, Lin HM, Chao KC, Ind. Eng. Chem. Fundam., 25, 75 (1986) 
  15. Kirkwood JG, Buff FP, J. Chem. Phys., 19, 774 (1951) 
  16. Kwon YJ, Lee JY, Kim KC, Korean J. Chem. Eng., 14(3), 184 (1997)
  17. Kwon YJ, Mansoori GA, J. Supercrit. Fluids, 6, 173 (1993) 
  18. Levelt Sengers JMH, J. Supercrit. Fluids, 4, 215 (1991) 
  19. Liong KK, Foster NR, Yun SLJ, Ind. Eng. Chem. Res., 30, 569 (1991) 
  20. Liu HQ, Macedo EA, Ind. Eng. Chem. Res., 34(6), 2029 (1995) 
  21. Mansoori GA, Leland TW, J. Chem. Soc.-Faraday Trans., 68, 320 (1972) 
  22. O'Connell JP, Fluid Phase Equilib., 6, 21 (1981) 
  23. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59 (1976) 
  24. Prausnitz JM, Lichenthaler NR, Azevedo EG, Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice-Hall, Englewood Cliffs, NJ (1986)
  25. Reid RC, Prausnitz JM, Poling BE, The Properties of Gases and Liquids, 4th ed., McGraw-Hill Book Co., New York (1987)
  26. Schmitt WJ, Reid RC, J. Chem. Eng. Data, 31, 204 (1986) 
  27. Shin GS, Park JS, Kwon YJ, Korean J. Chem. Eng., 15(6), 603 (1998)
  28. Shim JJ, Johnston KP, J. Phys. Chem., 95, 353 (1991)