화학공학소재연구정보센터
Journal of Bioscience and Bioengineering, Vol.99, No.1, 18-22, 2005
Formaldehyde-limited cultivation of a newly isolated methylotrophic bacterium, Methylobacterium sp MF1: Enzymatic analysis related to C-1 metabolism
Formaldehyde is a highly toxic compound to most living organisms. We have isolated a bacterial strain that is able to efficiently degrade formaldehyde and use it as a sole carbon source. The isolated strain was identified as Methylobacterium sp. MF1, which could grow on formaldehyde and methanol. Methylobacterium sp. MF1 was grown in batch culture using 1.2 g/l formaldehyde as a sole carbon source, which was all consumed within 200 h. In order to decompose formaldehyde more efficiently, formaldehyde-limited chemostat cultivation of Methylobacterium sp. MF1 was investigated. Formaldehyde was consumed at 1.7 g/l/d when the dilution rate was 0.012 h(-1). Under these conditions, the cell turbidity (OD610) reached 2.0. Furthermore, when the initial turbidity was adjusted to 3.0 using methanol-grown cells, continuous cultivation could be started at an initial dilution rate of 0.008 h(-1). Using these conditions, consumption of formaldehyde could be continued for at least 600 h. The enzyme activities of cells growing as a chemostat culture, using methanol or formaldehyde as a sole carbon source, were compared to that of C-1 metabolism. No difference was detected in the enzyme activities for the oxidation and assimilation of C-1 compounds between the two cell-free extracts. Furthermore, methanol dehydrogenase activity was detected at the same level when formaldehyde was used as a sole carbon source. These results suggest that the resistance to the toxic effects of formaldehyde exhibited by Methylobacterium sp. MF1 is related to factors other than C-1 metabolism.