화학공학소재연구정보센터
Journal of Polymer Science Part B: Polymer Physics, Vol.43, No.5, 562-572, 2005
Kinetics of fluid spreading on viscoelastic substrates
The spontaneous spreading of non-film-forming fluids on the surfaces of aqueous solutions of poly(2-acrylamido-2-methyl-propanesulfonic acid) and its chemically crosslinked gels was studied. The experiments were performed in the same concentration range for the solutions and gels, far above the overlap concentration of the polymer solutions. The leading edge (R) of the spreading liquid showed a power-law behavior with time t: R = K(t + c)(alpha), where alpha is the spreading exponent and K is the spreading prefactor. alpha and K were significantly different for the polymer solutions and gels. Here c was a constant that depended on the initial conditions of the spreading liquids. Depending on the polymer concentration, alpha of the polymer solutions varied between the upper (3/4) and lower (1/10) theoretical limits for viscose liquids and solids, respectively. This indicates that no universal scaling law exists for the spreading process on viscoelastic surfaces. On the polymer gels, which were elastic substrates, universal values of alpha could be observed and could be expressed as R proportional to (t + c)(0.45) and R proportional to (t + c)(0.3) for miscible and nonmiscible spreading liquids, respectively; they showed no dependence on the polymer concentration or network mesh size. This shows that on an elastic gel surface, spreading is more or less similar to that on a solid surface. (C) 2005 Wiley Periodicals, Inc.