화학공학소재연구정보센터
Chinese Journal of Chemical Engineering, Vol.13, No.1, 18-23, 2005
Suitability of steric mass-action model for ion-exchange equilibrium of micromolecule
The steric mass-action (SMA) model has been widely reported in the literature for ion-exchange and metal-affinity interaction adsorption equilibrium of biomacromolecules. In this paper, the usefulness of SMA model is analyzed for describing micromolecule ion-exchange equilibrium onto cation exchangers, CM Sephadex C-25 and Streamline SP. Batch adsorption experiments with ephedrine hydrochloride as a model adsorbate are carried out to determine the model parameters, that is, steric factor, characteristic charge and equilibrium constant. The result shows that the SMA model parameters of micromolecule cannot be obtained using the nonlinear least-square fitting method as protein's due to the remarkable difference between the molecular mass and dimension of micromolecule and protein. It is considered that the small size of the adsorbates dealt with in this study justifies the neglect of steric hindrances arising from adsorbate bulkiness. Thus, the three-parameter SMA model is reduced to two-parameter one (i.e., steric factor is equal to zero) for describing micromolecule ion-exchange equilibrium. It is found that the equilibrium constant for CM Sephadex C-25 increases with increasing ionic strength, while the equilibrium constant for Streamline SP shows an opposite trend. This is probably due to the remarkable difference between the physical properties of the two adsorbents. Then, the relationship between the equilibrium constant and ionic strength is described by an expression. The computer simulations show that, the theoretical model with the correlation is promising in the prediction of micromolecule adsorption decrease with increasing ionic strength in a wide range of salt concentration.