화학공학소재연구정보센터
Langmuir, Vol.21, No.6, 2545-2551, 2005
Synthesis of nanoporous graphite-derived carbon-silica composites by a mechanochemical intercalation approach
A mechanochemical intercalation approach which applies a simple mechanical milling to induce intercalation reaction was applied to introduce controlled amount of tetraethoxylsilane (TEOS) into surfactant-preexpanded graphite oxide, and the relationships between the intercalation structure, the porosities of the calcined products, and the Si addition were examined. It was found that a small added amount of TEOS produced a more expanded ordered layer structure with the interlayer distance and silicon content increasing with the amount of TEOS added, although a large amount of added TEOS easily induces layer delamination, resulting in a less ordered structure. The silica structure in the composite is changed from a disordered structure having enhanced bond strain to a condensed silica network when the amount of TEOS added increases. The porosities of the final calcined samples increase with the increase of silicon content but then decrease slightly after reaching a maximum where silicon content starts to become constant, indicating that both silicon content and the composition state of silica particles and carbon layers play important roles in porosity formation.