화학공학소재연구정보센터
Langmuir, Vol.21, No.6, 2488-2494, 2005
Sequence-specific binding of DNA to liposomes containing di-alkyl peptide nucleic acid (PNA) amphiphiles
We present a method to covalently attach peptide nucleic acid (PNA) to liposomes by conjugation of PNA peptide to charged amino acids and synthetic di-alkyl lipids ("PNA amphiphile," PNAA) followed by co-extrusion with disteroylphosphatidylcholine (DSPC) and cholesterol. Attachment of four Glu residues and two ethylene oxide spacers to the PNAA was required to confer proper hydration for extrusion and presentation for DNA hybridization. The extent of DNA oligomer binding to 10-mer PNAA liposomes was assessed using capillary zone electrophoresis. Nearly all PNAs on the liposome surface are complexed with a stoichiometric amount of complementary DNA 10-mers after 3-h incubation in pH 8.0 Tris buffer. No binding to PNAA liposomes was observed using DNA 10-mers with a single mismatch. Longer DNA showed a greatly attenuated binding efficiency, likely because of electrostatic repulsion between the PNAA liposome double layer and the DNA backbone. Langmuir isotherms of PNAA:DSPC:chol monolayers indicate miscibility of these components at the compositions used for liposome preparation. PNAA liposomes preserve the high sequence-selectivity of PNAs and emerge as a useful sequence tag for highly sensitive bioanalytical devices.