화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.283, No.1, 215-222, 2005
Effect of electric fields on contact angle and surface tension of drops
Contact angles of sessile drops were experimentally investigated in the electric field. The experimental setup was designed such that the electric field was applied to all three interfaces. The advanced Automated Polynomial Fitting (APF) methodology was employed to measure contact angles with high accuracy. The significance of the observations and trends was examined by conducting statistical tests of hypothesis. It was found that contact angles of polar liquids such as alcohols increase in the electric field. However, no significant trend was observed for nonpolar liquids such as alkanes. The change in the contact angle was found to be stronger for liquids with longer molecules. It was shown that the polarity of the electric field is not an underlying factor in the observed trends. Using the equation of state for interfacial tensions, the observed shift in contact angles was translated into a corresponding change in surface tension of the liquids. The results suggest that the surface tension of alcohols increases by one to two percent (depending on the size of molecules) when an electric field of the order of magnitude of 10(6) V/m is applied. (C) 2004 Elsevier Inc. All rights reserved.