Polymer, Vol.46, No.2, 539-552, 2005
Development of a unified framework for calculating molecular weight distribution in diffusion controlled free radical bulk homo-polymerization
In the present work, two different approaches to model diffusion controlled free radical polymerization, namely the free volume model and the entanglement theory are compared. These approaches are applied to methyl methacrylate bulk polymerization in a batch reactor to calculate the conversion, total radical concentration, the number and weight average molecular weights as well as the entire molecular weight distribution as a function of the polymerization time and the process conditions. All the diffusion-controlled phenomena were taken into account, including gel, glass and cage effects as well as residual termination. The molecular weight distribution is calculated by direct numerical integration of a large system of non-linear ordinary differential equations describing the conservation of the mass of macromolecular species in the batch reactor. Model predictions are in good agreement with available experimental data for conversion, number and weight average molecular weights as well as the entire molecular weight distribution, thus justifying the ability of these models to describe the main issues of the diffusion-controlled free radical polymerization. (C) 2004 Elsevier Ltd. All rights reserved.