Inorganic Chemistry, Vol.43, No.25, 7945-7952, 2004
Insights into partially folded or unfolded states of metalloproteins from nuclear magnetic resonance
Nuclear magnetic resonance (NMR) provides detailed insights into the conformational features of unfolded and partially folded proteins. In the case of metalloproteins, special attention should be devoted to the characterization of the properties of the metal binding sites, and specific approaches need to be developed depending on the nature of the metal ion and its coordination environment. At the same time, metal-based NMR parameters may help in getting a better picture of the average structural properties of the metalloprotein. A critical evaluation of the limits of applicability of paramagnetic effects for solution structure determination in partially folded or unfolded proteins is presented. The coupling between NMR characterization of structure and dynamic of the polypeptide chain and of the metal environment provides insights into the stabilizing role of metal ions in metalloproteins. The overall approach is illustrated for some case examples of increasing flexibility obtained far from native conditions for cytochrome c and superoxide dismutase, two metalloproteins that have been extensively studied in our lab and whose misfolded forms may be relevant for important biological processes.