화학공학소재연구정보센터
Chemical Engineering and Processing, Vol.36, No.5, 341-352, 1997
Catalytic Combustion in a Reactor with Periodic-Flow Reversal .2. Steady-State Reactor Model
Analysis of the reverse-flow reactor and comparison to a conventional adiabatic fixed bed reactor with external heat exchanger has shown that both systems are closely related. The required additional system parameter is the center of gravity of energy release caused by exothermic chemical reaction, which can also be rationalized as the mean fraction of the reverse-flow reactor acting as a regenerative heat exchanger. A simple steady-state countercurrent reactor model that is capable of describing the influence of adiabatic temperature rise and heat transfer properties of the fixed bed of catalyst on mean reactant conversion and temperature profile in cycle steady state is proposed. Generally, the agreement between calculated and experimentally determined parameters is satisfying. While discrepancies occur in the case of carbon monoxide oxidation, reactant conversion and maximum temperature as well as the minimum concentration for stable operation in cycle steady state are accurately predicted for the oxidation of propane.