화학공학소재연구정보센터
Applied Catalysis B: Environmental, Vol.55, No.1, 31-37, 2005
Catalytic soot oxidation in microscale experiments
The oxidation of soot agglomerates over catalytically active surfaces is of interest for the development of catalytic reactors for the control of soot emissions. The process involves the transport and deposition of nanoparticle aggregates to a surface on which catalyst particles are deposited. To simulate this process, graphitized carbon nanoparticles and platinum nanoparticles were separately deposited on an oxidized silicon wafer by laser ablation and electro hydro dynamic atornization. Changes in particle morphology produced by the reaction were visualized ex situ by scanning electron microscopy. In this way chemical reaction data could be correlated with the local surface coverage and particle size of the catalytically active material and the morphology of the reacting particles, resulting in detailed local information on their interaction, which is not available in studies on bulk samples. The contact between catalyst and soot particles was loose, simulating the behavior of catalyst systems used in practice. The activation energy of the oxidation in air was found to be 40 kJ/mol whereas the activation energy in air/NO was found to be 160 kJ/mol, both in presence of Pt deposited on a SiO2 support. Notwithstanding the higher activation energy, the reaction rate of soot oxidation in air/NO is about two to three orders of magnitude higher than in air. A linear relationship between the relative Pt surface and reaction rate was found for the oxidation in an air/NO atmosphere. In air, the relationship has a minimum which indicates that there are different simultaneous mechanisms of reaction. Although activation energies are different from other studies, the oxidation temperatures are comparable. The EHDA and laser ablation produced platinum catalysts behave similarly and show potential to be used as model catalyst. (C) 2004 Elsevier B.V. All rights reserved.