Journal of the American Chemical Society, Vol.126, No.45, 14988-14994, 2004
Enantioselective separation on a naturally chiral surface
Kinked-stepped, high Miller index surfaces of metal crystals are chiral and, therefore, exhibit enantiospecific properties. Previous temperature-programmed desorption (TPD) spectra have shown that the desorption energies of R-3-methylcyclohexanone (R-3-MCHO) on the chiral Cu(643)(R) and Cu(643)(S) surfaces are enantiospecific (J. Am. Chem. Soc. 2002, 124, 2384). Here, a comparison of the TPD spectra from Cu(111), Cu(221), Cu(533), Cu(653)(R&S), and Cu(643)(R&S) surfaces reveals that the enantiospecific desorption occurs from the chiral kink sites on the Cu(643) surfaces. Titration of the chiral kink sites with I atoms confirms this assignment of desorption features in the TPD spectra. Finally, the enantiospecific difference in the desorption energies of R- and S-3-MCHO has been used as the basis for demonstration of an enantioselective, kinetic separation of racemic 3-MCHO into its purified components during adsorption and desorption on the Cu(643)(R&S) surfaces.