Journal of Materials Science, Vol.39, No.19, 5995-6003, 2004
Carbon fiber reinforced hafnium carbide composite
Hafnium carbide is proposed as a structural material for aerospace applications at ultra high temperatures. The chemical vapor deposition technique was used as a method to produce monolithic hafnium carbide (HfC) and tantalum carbide (TaC). The microstructure of HfC and TaC were studied using analytical techniques. The addition of tantalum carbide (TaC) in the HfC matrix was studied to improve the microstructure. The microstructure of HfC, TaC and co-deposited hafnium carbide-tantalum carbide (HfC/TaC) were comparable and consisted of large columnar grains. Two major problems associated with HfC, TaC, and HfC/TaC as a monolithic are lack of damage tolerance (toughness) and insufficient strength at very high temperatures. A carbon fiber reinforced HfC matrix composite has been developed to promote graceful failure using a pyrolytic graphite interface between the reinforcement and the matrix. The advantages of using carbon fiber reinforcement with a pyrolytic graphite interface are reflected in superior strain capability reaching up to 2%. The tensile strength of the composite was 26 MPa and needs further improvement. Heat treatment of the composite showed that HfC did not undergo any phase transformations and that the phases comprising composite were are thermochemically compatible. (C) 2004 Kluwer Academic Publishers.