Chemical Engineering & Technology, Vol.23, No.11, 985-995, 2000
Modeling flow distribution for internally manifolded direct methanol fuel cell stacks
A model is presented for the liquid feed direct methanol fuel cell, which describes the hydraulic behavior of an internally manifolded cell stack. The model is based on the homogeneous two-phase flow theory and mass conservation equation. The model predicts the pressure drop behavior of an individual fuel cell, and is used to calculate flow distribution through fuel cell stack internal manifolds. The flow distribution of the two-phase fluids in the anode and the cathode chambers is predicted as a function of cell operating parameters. An iterative numerical scheme is used to solve the differential equations for longitudinal momentum and continuity.