화학공학소재연구정보센터
Journal of Chemical Physics, Vol.121, No.24, 12760-12771, 2004
Foldamer simulations: Novel computational methods and applications to poly-phenylacetylene oligomers
We apply several methods to probe the ensemble kinetic and structural properties of a model system of poly-phenylacetylene (pPA) oligomer folding trajectories. The kinetic methods employed included a brute force accounting of conformations, a Markovian state matrix method, and a nonlinear least squares fit to a minimalist kinetic model used to extract the folding time. Each method gave similar measures for the folding time of the 12-mer chain, calculated to be on the order of 7 ns for the complete folding of the chain from an extended conformation. Utilizing both a linear and a nonlinear scaling relationship between the viscosity and the folding time to correct for a low simulation viscosity, we obtain an upper and a lower bound for the approximate folding time within the range 70 ns