화학공학소재연구정보센터
Journal of Chemical Physics, Vol.121, No.20, 10041-10051, 2004
Ab initio calculations and vibrational energy level fits for the lower singlet potential-energy surfaces of C-3
Ab initio multireference configuration interaction potential energy surfaces are computed for the eight lowest singlet surfaces of C-3. These reveal several important features, including several conical intersections in linear, nonlinear, and equilateral triangle geometries. These intersections are important because, particularly for the excited A (1)Pi(u) state, reasonable ab initio results could only be obtained by including nearby, near degenerate, (1)Sigma(u)(-) and (1)Delta(u) states that cross the A (1)Pi(u) state around 4500 cm(-1) above the equilibrium geometry, and a (1)Pi(g) state whose potential in turn crosses the other states about 2000 cm(-1) further up. These states are probably responsible for the complexity of the shorter wavelength UV absorption spectrum of C-3. The computed potential energy surface for the ground, X (1)Sigma(g)(+), state and for the lowest two excited singlet surfaces (which both correlate with the A (1)Pi(u) state in a collinear geometry) are fitted to analytic functional forms. Vibrational energy levels are calculated for both states, taking account of the Renner-Teller coupling in the excited A (1)Pi(u) state. The potential parameters for both states are then least-squares fitted to experimental data. The ground-state fit covers a range of similar to8500 cm(-1) above the lowest level, and reproduces 100 observed vibrational levels with an average error of 2.8 cm(-1). The A (1)Pi(u) state surfaces cover a range of 3250 cm(-1) above the zero-point level, and reproduce the 44 observed levels in this range with an average error of 2.8 cm(-1). (C) 2004 American Institute of Physics.