Journal of Chemical Physics, Vol.121, No.20, 10006-10014, 2004
Mechanism for the formation of gas-phase protonated alcohol-ether adducts by VUV laser ionization and density-functional calculations
The neutral vapors above liquid alcohol/ether mixtures, (diethyl ether/methanol, diethyl ether/ethanol, tetrahydrofuran/methanol, and tetrahydrofuran/ethanol) were co-expanded with He in a supersonic jet, ionized with a 118-nm vacuum ultraviolet laser, and detected in a time-of-flight mass spectrometer. In each case, features attributed to protonated alcohol-ether dimers and protonated ether monomers were observed, as well as those ions obtained by ionizing neat alcohol or ether samples alone. Theoretical calculations, carried out to establish the energetics of the various possible reactions leading to the formation of the observed binary adducts, indicate that the most thermodynamically favorable pathway corresponds to the addition of a protonated alcohol monomer to neutral ether. (C) 2004 American Institute of Physics.