화학공학소재연구정보센터
Journal of Chemical Physics, Vol.121, No.19, 9623-9629, 2004
Vapor-liquid transitions of dipolar fluids in disordered porous media: Performance of angle-averaged potentials
Using replica integral equations in the reference hypernetted-chain (RHNC) approximation we calculate vapor-liquid spinodals, chemical potentials, and compressibilities of fluids with angle-averaged dipolar interactions adsorbed to various disordered porous media. Comparison with previous RHNC results for systems with true angle-dependent Stockmayer (dipolar plus Lennard-Jones) interactions [C. Spoler and S. H. L. Klapp, J. Chem. Phys. 118, 3628 (2003); ibid.120, 6734 (2004)] indicate that, for a dilute hard sphere matrix, the angle-averaged fluid-fluid (ff) potential is a reasonable alternative for reduced fluid dipole moments m(*2)=mu(2)/(epsilon(0)sigma(3))less than or equal to2.0. This range is comparable to that estimated in bulk fluids, for which RHNC results are presented as well. Finally, results for weakly polar matrices suggest that angle-averaged fluid-matrix (fm) interactions can reproduce main features observed for true dipolar (fm) interactions such as the shift of the vapor-liquid spinodals towards lower temperatures and higher densities. However, the effective attraction induced by dipolar (fm) interaction is underestimated rather than overestimated as in the case of angle-averaged ff interactions.(C) 2004 American Institute of Physics.