화학공학소재연구정보센터
Journal of Chemical Physics, Vol.121, No.9, 4193-4202, 2004
Low-temperature nucleation in a kinetic Ising model under different stochastic dynamics with local energy barriers
Using both analytical and simulational methods, we study low-temperature nucleation rates in kinetic Ising lattice-gas models that evolve under two different Arrhenius dynamics that interpose between the Ising states a transition state representing a local energy barrier. The two dynamics are the transition-state approximation [T. Ala-Nissila, J. Kjoll, and S. C. Ying, Phys. Rev. B 46, 846 (1992)] and the one-step dynamic [H. C. Kang and W. H. Weinberg, J. Chem. Phys. 90, 2824 (1989)]. Even though they both obey detailed balance and are here applied to a situation that does not conserve the order parameter, we find significant differences between the nucleation rates observed with the two dynamics, and between them and the standard Glauber dynamic [R. J. Glauber, J. Math. Phys. 4, 294 (1963)], which does not contain transition states. Our results show that great care must be exercised when devising kinetic Monte Carlo transition rates for specific physical or chemical systems. (C) 2004 American Institute of Physics.