화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.94, No.3, 1316-1325, 2004
Continuous ultrasonic devulcanization of unfilled butyl rubber
The devulcanization of resin-cured unfilled butyl rubber with a grooved-barrel ultrasonic reactor under various processing conditions was carried out. The experiments indicated that, because of the lower unsaturation and good thermal stability of butyl rubber, its devulcanization could be successfully accomplished only under severe ultrasonic-treatment conditions. Gel permeation chromatography measurements were carried out for the virgin gum and sol part of devulcanized samples to study the changes in the rubber network during the devulcanization process. The obtained data showed a significant molecular weight reduction and a broadening of the molecular weight distribution upon devulcanization, which indicated that the devulcanization and degradation of butyl rubber occurred simultaneously. The rheological properties showed that devulcanized butyl rubber was more elastic than the virgin gum. The vulcanizates of the devulcanized butyl rubber showed mechanical properties comparable to those of the virgin vulcanizate. The thermal behaviors of the virgin and devulcanized butyl rubber were different and were correlated to the double-bond content. The structural characteristics of the devulcanized butyl rubber were simulated with the Dobson-Gordon theory of rubber network statistics. A fairly good agreement between the experimental data and theoretical prediction was achieved. The simulation of devulcanized butyl rubber indicated that the rate of crosslink rupture was much higher than that of the main chain. (C) 2004 Wiley Periodicals, Inc.