화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.49, No.11, 1963-1974, 2004
Formations of vehicles in cyclic pursuit
Inspired by the so-called "bugs" problem from mathematics, we study the geometric formations of multivehicle systems under cyclic pursuit. First, we introduce the notion of cyclic pursuit by examining a system of identical linear agents in the plane. This idea is then extended to a system of wheeled vehicles, each subject to a single nonholonomic constraint (i.e., unicycles), which is the principal focus of this paper. The pursuit framework is particularly simple in that the n identical vehicles are ordered such that vehicle i pursues vehicle i + 1 modulo n. In this paper, we assume each vehicle has the same constant forward speed. We show that the system's equilibrium formations are generalized regular polygons and it is exposed how the multivehicle system's global behavior can be shaped through appropriate controller gain assignments. We then study the local stability of these equilibrium polygons, revealing which formations are stable and which are not.