IEEE Transactions on Automatic Control, Vol.49, No.5, 651-664, 2004
Tutorial on the positive realization problem
This paper is a tutorial on the positive realization problem, that is the problem of finding a positive state-space representation of a given transfer function and characterizing existence and minimality of such representation. This problem goes back to the 1950s and was first related to the identifiability problem for hidden Markov models, then to the determination of internal structures for compartmental systems and later embedded in the more general framework of positive systems theory. Within this framework, developing some ideas sprang in the 1960s, during the 1980s, the positive realization problem was reformulated in terms of a geometric condition which was recently exploited as a tool for finding the solution to the existence problem and providing partial answers to the minimality problem. In this paper, the reader is carried through the key ideas which have proved to be useful in order to tackle this problem. In order to illustrate the main results, contributions and open problems, several motivating examples and a comprehensive bibliography on positive systems organized by topics are provided.