화학공학소재연구정보센터
Chemical Engineering & Technology, Vol.27, No.11, 1227-1232, 2004
Reactor modeling of gas-phase polymerization of ethylene
A model is developed for evaluating the performance of industrial-scale gas-phase polyethylene production reactors. This model is able to predict the properties of the produced polymer for both linear low-density and high-density polyethylene grades. A pseudo-homogeneous state was assumed in the fluidized bed reactor based on negligible heat and mass transfer resistances between the bubble and emulsion phases. The nonideal flow pattern in the fluidized bed reactor was described by the tanks-in-series model based on the information obtained in the literature. The kinetic model used in this work allows to predict the properties of the produced polymer. The presented model was compared with the actual data in terms of melt index and density and it was shown that there is a good agreement between the actual and calculated properties of the polymer. New correlations were developed to predict the melt index and density of polyethylene based on the operating conditions of the reactor and composition of the reactants in feed.