화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.88, No.2, 189-203, 2004
Stochastic modeling of the phase-variable pap operon regulation in uropathogenic Escherichia coli
Regulation of the pap operon in uropathogenic Escherichia coli is phase variable. This phase variation arises from competition between regulatory proteins at two sites within the regulatory region, GATC(dist) and GATC(prox). We have used the available literature data to design a stochastic model of the molecular interactions of pap regulation and expression during growth in a non-glucose environment at 37degreesC. The resulting wild-type model is consistent with reported data. The wild-type model served as a basis for two "in silico" mutant models for investigating the role of key regulatory components, the GATC(dist) binding site and the Papl interaction with Lrp at the GATC(prox) site. Our results show that competition at GATC(dist) is required for phase variation, as previously reported. However, our results suggest that removal of competition at GATC(dist) does not affect initial state dependence. Additionally, the Papl involvement in Lrp translocation from GATC(prox) to GATC(dist) is required for the initial state dependence but not for phase variation. Our results also predict that pap expression is maximized at low growth rates and minimized at high growth rates. These predictions provide a basis for further experimental investigation. (C) 2004 Wiley Periodicals, Inc.