화학공학소재연구정보센터
Solid State Ionics, Vol.171, No.3-4, 243-249, 2004
Preparation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization
Polymer electrolyte membranes with different degrees of grafting were prepared by radiation-induced graft copolymerization of styrene monomer onto poly(vinylidene fluoride) (PVDF) films and subsequent chemical activation with liquid electrolyte consisting of lithium hexafluorophosphate (LiPF6) in a mixture of ethylene carbonate/diethylene carbonate (EUDEC). The chemical changes in the PVDF films after styrene grafting and subsequent chemical activation were monitored by FTIR spectroscopic analysis and the crystallinity was evaluated using differential scanning calorimetric (DSC) analysis. The swelling in electrolyte solution (electrolyte uptake) and the ionic conductivity of the membranes were determined at various degrees of grafting. The conductivity of the membranes was found to increase with the increase in the degree of grafting and reached a magnitude of 10(-3) S/cm at a degree of grafting of 50%. The results of this work suggest that radiation-induced graft polymerization provides an alternative method to substitute blending in preparation of polymer electrolyte membranes for application in lithium batteries. (C) 2004 Elsevier B.V. All rights reserved.