Rheologica Acta, Vol.43, No.1, 17-37, 2004
The weak shear kinetic phase diagram for nematic polymers
We study the shear problem for nematic polymers as modeled by the molecular kinetic theory of Doi (1981), focusing on the anomalous slow flow regime. We provide the kinetic phase diagram of monodomain (MD) attractors and phase transitions vs normalized nematic concentration (N) and weak normalized shear rate (Peclet number, Pe). We then overlay all rheological features typically reported in experiments: alignment properties, normal stress differences and shear stress. These features play a critical role in the synthesis between theory and experiment for nematic polymers (Larson 1999; Doi and Edwards 1986). MD type is routinely used for rheological shear characterization: cf., flow-aligning 5CB (Mather et al. 1996a), tumbling PBT (Srinivasarao and Berry 1991), and 8CB (Mather et al. 1996b), evidence for a wagging regime (Mewis et al. 1997), out-of-plane kayaking modes (Larson and Ottinger 1991), and evidence for chaotic major director dynamics (Bandyopadhyay et al. 2000). MD transitions correlate with sign changes in normal stresses (Larson and Ottinger 1991; Magda et al. 1991; Kiss and Porter 1978, 1980). Furthermore, structure formation in shear devices appears to be correlated with monodomain precursor dynamics (Tan and Berry 2003; Forest et al. 2002a). In this paper we combine seminal kinetic theory results (Kuzuu and Doi 1983, 1984; Larson 1990; Larson and Ottinger 1991; Faraoni et al. 1999; Grosso et al. 2001), symmetry observations (Forest et al. 2002b), and mesoscopic results on the fate of orientational degeneracy in weak shear (Forest and Wang 2003; Forest et al. 2003a), together with our resolved numerical simulations, to provide the kinetic flow-phase diagram of Doi theory in the weak shear regime, 01 ; as the definitive benchmark for any mesoscopic or continuum model; and experimental data can be compared in order to determine accuracy and limitations of the Doi theory in weak shear.