화학공학소재연구정보센터
Polymer, Vol.45, No.15, 5163-5170, 2004
Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes
The thermo-physical properties and the impact strength of diglycidyl ether of bisphenol F (DGEBF) epoxy nanocomposites reinforced with fluorinated single-wall carbon nanotubes (FSWCNT) are reported. A sonication technique was used to disperse FSWCNT in the glassy epoxy network resulting in nanocomposites having large improvement in modulus with extremely small amount of FSWCNT. The glass transition temperature decreased approximately 30degreesC with an addition of 0.2 wt% (0.14 vol%) FSWCNT, without adjusting the amount of the anhydride curing agent. This was because of non-stoichiometry of the epoxy matrix that was caused by the fluorine on the single-wall carbon nanotubes. The correct amount of the anhydride curing agent needed to achieve stoichiometry was experimentally examined by dynamic mechanical analysis (DMA). The storage modulus of the epoxy at room temperature (which is below the glass transition temperature of the nanocomposites) increased up to 0.63 GPa with the addition of only 0.30 wt% (0.21 vol%) of FSWCNT, representing an up to 20% improvement compared with the neat epoxy. The Izod impact strength slightly decreased when the amount of FSWCNT was increased to 0.3 wt%. The excellent improvement in the storage modulus was achieved without sacrificing impact strength. (C) 2004 Elsevier Ltd. All rights reserved.