Langmuir, Vol.20, No.16, 6788-6795, 2004
Rheology of binary colloidal structures assembled via specific biological cross-linking
The selectivity and range of energies offered by specific biological interactions serve as valuable tools for engineering the assembly of colloidal particles into novel materials. In this investigation, high affinity biological interactions between biotin-coated "A" particles (R-A = 0.475 mum) and streptavidin-coated "B" particles (R-B = 2.75 mum) drive the self-assembly of a series of binary colloidal structures, from colloidal micelles (a large B particle coated by smaller A particles) to elongated chain microstructures (alternating A and B particles), as the relative number of small (A) to large (B) particles (2 less than or equal to N-A/N-B less than or equal to 200) is decreased at a low total volume fraction (10(-4) less than or equal to phi(T) less than or equal to 10(-3)). At a significantly higher total volume fraction (phi(T) greater than or equal to 10(-1)) and a low number ratio (N-A/N-B = 2), the rheological behavior of volume-filling particle networks connected by streptavidin-biotin bonds is characterized. The apparent viscosity (eta) as a function of the shear rate (gamma), measured for networks at phi(T) = 0.1 and 0.2, exhibits shear-rate-dependent flow behavior, and both the apparent viscosity and the extent of shear thinning increase upon an increase of a factor of 2 in the total volume fraction. Micrographs taken before and after shearing show a structural breakdown of the flocculated binary particle network into smaller flocs, and ultimately a fluidlike suspension, with increasing shear rate. Rheological measurements provide further proof that suspension microstructure is governed by specific biomolecular interactions, as control experiments in which the streptavidin molecules on particles were blocked displayed Newtonian flow behavior. This investigation represents the first attempt at measuring the rheology of colloidal suspensions where assembly is driven by biomolecular cross-linking.