Journal of Vacuum Science & Technology A, Vol.22, No.5, 2041-2047, 2004
Influence of substrate bias on practical adhesion, toughness, and roughness of reactive dc-sputtered zirconium nitride films
The ZrN films were grown on Si (100) substrates using dc magnetron sputtering where the substrate bias was varied from -45 to 50 V. In this article, the film/substrate practical adhesion of the ZrN films were measured by scratch testing while the hardness, elastic modulus, and fracture toughness were measured by nanoindentation. The structures and morphologies of the ZrN films were analyzed using scanning electron microscopy, atomic force microscopy, and x-ray diffraction. The results indicate that the introduction of either negative or positive bias results in the degradation of the practical adhesion properties, while the films under zero bias exhibit the best adhesion. In addition, positive bias results in the increase in both the hardness and elastic modulus, while negative bias enhances the hardness and toughness of the ZrN thin films. The mechanical properties are greatly influenced by substrate bias and can be correlated to microstructure variations. The detailed mechanisms accounted for these phenomena are discussed. (C) 2004 American Vacuum Society.