Journal of the American Chemical Society, Vol.126, No.41, 13247-13254, 2004
Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation
Genetic selection provides the most powerful method to assay large libraries of biomolecules for function. However, harnessing the power of genetic selection for the detection of specific, nonendogenous small-molecule targets in vivo remains a significant challenge. The ability to genetically select for small molecules would provide a reaction-independent mechanism to clone biosynthesis genes from large DNA libraries and greatly facilitate the exploration of large libraries of mutant enzymes for improved synthetic capabilities including altered substrate specificities and enhanced regio- or stereoselectivities. While remarkable progress has been made in developing genetic methods to detect small molecules in vivo, many of these methods rely on engineering small-molecule-protein interactions which remains a difficult problem, and the potential for some of these systems to assay large libraries is limited by the low transformation efficiency and long doubling time of yeast relative to bacteria. Herein, we demonstrate that synthetic riboswitches that activate protein translation in response to a specific small molecule can be used to perform sensitive genetic screens and selections for the presence of small molecules in Escherichia coli. We further demonstrate that the exquisite molecular discrimination properties of aptamers selected in vitro translate directly into an in vivo genetic selection system. Finally, we demonstrate that a cell harboring a synthetic riboswitch with a particular ligand specificity can be selectively amplified from a million-fold larger pool of cells containing mutant riboswitches that respond to a closely related ligand, suggesting that it is possible to use genetic selection in E. coli to discover synthetic riboswitches with new ligand specificities from libraries of mutant riboswitches.