International Journal of Heat and Mass Transfer, Vol.47, No.21, 4579-4591, 2004
Turbulent heat transfer in a channel flow with arbitrary directional system rotation
Arbitrary directional system rotation of a channel flow can be decomposed into simultaneous componential rotations in the three orthogonal directions. In order to study its effect on turbulent heat transfer, three typical cases, i.e., combined spanwise and streamwise (Case I), streamwise and wall-normal (Case II), and wall-normal and spanwise rotations (Case III), are simulated with two of the three coordinate-axial rotations imposed on the system. In Case I, the effect of spanwise rotation dominates the heat transfer mechanism when the two componential rotation rates are comparable. However, if the streamwise rotation is much stronger than the spanwise rotation, the turbulent heat transfer can be enhanced on the two walls, but more strikingly on the suction side. In Case II, even though no explicit spanwise rotation is imposed on the system, the combined rotations also bring the enhancement/reduction of turbulent heat transfer on the pressure/suction side, respectively, which is similar to that in a spanwise rotating channel flow. In Case III, the spanwise rotation effect is still obvious, however, its effect is reduced somewhat due to the redirection of the mean flow by the wall-normal rotation. (C) 2004 Elsevier Ltd. All rights reserved.
Keywords:turbulent heat transfer;rotating channel flow;direct numerical simulation;combined system rotations