Automatica, Vol.40, No.6, 929-944, 2004
Robust adaptive path following of underactuated ships
Robust path following is an issue of vital practical importance to the ship industry. In this paper, a nonlinear robust adaptive control strategy is developed to force an underactuated surface ship to follow a predefined path at a desired speed, despite the presence of environmental disturbances induced by wave, wind and ocean-current. The proposed controller is scalable and is designed using Lyapunov's direct method and the popular backstepping and parameter projection techniques. Along the way of proving closed-loop stability, we obtain a new stability result for nonlinear cascade systems with non-vanishing uncertainties. Interestingly, it is shown in this paper that our developed control strategy is easily extendible to situations of practical importance such as parking and point-to-point navigation. Numerical simulations using the real data of a monohull ship are provided to illustrate the effectiveness of the proposed methodology for path following of underactuated ships. (C) 2004 Elsevier Ltd. All rights reserved.
Keywords:path following;parking;point-to-point navigation;underactuated ship;cascade system;nonlinear control;robustness;adaptation