Korean Journal of Chemical Engineering, Vol.22, No.2, 214-218, March, 2005
The Effect of Two-Layer Cathode on the Performance of the Direct Methanol Fuel Cell
E-mail:
To reduce the effect of methanol permeated from the anode, the structure of the cathode was modified from a single layer with Pt black catalyst to two-layer with PtRh black and Pt black catalysts, respectively. The current density of the direct methanol fuel cell (DMFC) using the two-layer cathode was improved to 228 mA/cm2 compared to that (180 mA/cm2) of the DMFC using the single layer cathode at 0.3 V and 303 K. From the cyclic voltammograms (CVs), it is indicated that the amount of adsorbates on the metal catalyst in the two-layer cathode is less than that of adsorbates in the single layer cathode after methanol test. In addition, the adsorbates were removed very rapidly by electrochemical oxidation from the two-layer cathode. It is suggested from ex situ X-ray absorption near edge structure analysis that the d-electron vacancy of Pt atom in the two-layer cathode is not changed by the methanol test. Thus, Pt is not covered with the adsorbates, which agrees well with the results of CV.
- Arico AS, Creti P, Kim H, Mantegna R, Giordano N, Antonucci V, J. Electrochem. Soc., 143(12), 3950 (1996)
- Bedrane S, Descorme C, Duprez D, Catal. Today, 73(3-4), 233 (2002)
- Chang H, Kim JR, Cho JH, Kim HK, Choi KH, Solid State Ion., 148(3-4), 601 (2002)
- Elliott JM, Birkin PR, Bartlett PN, Attard GS, Langmuir, 15(22), 7411 (1999)
- Friedrich KA, Geyzers KP, Dickinson AJ, Stimming U, J. Electroanal. Chem., 524, 261 (2002)
- Kim HK, Cho JH, Chang H, Hybrid Polymer Electrolyte to Reduce the Fuel Cross-over in DMFC, Proceeding of 201th ECS symposium, Abstract No 180, Philadelphia, USA (2002)
- Koch DFA, Rand DAJ, Woods R, J. Electroanal. Chem., 70, 73 (1976)
- Lee SA, Park KW, Kwon BK, Sung YE, J. Ind. Eng. Chem., 9(1), 63 (2003)
- Lee SJ, Mukerjee S, McBreen J, Rho YW, Kho YT, Lee TH, Electrochim. Acta, 43(24), 3693 (1998)
- Lee SJ, Mukerjee S, Ticianelli EA, McBreen J, Electrochim. Acta, 44(19), 3283 (1999)
- Lee CS, Yi SC, Korean J. Chem. Eng., 21(6), 1153 (2004)
- Ma ZQ, Cheng P, Zhao TS, J. Membr. Sci., 215(1-2), 327 (2003)
- Markovic NM, Gasteiger HA, Ross PN, Jiang XD, Villegas I, Weaver MJ, Electrochim. Acta, 40(1), 91 (1995)
- Miyake N, Wainright JS, Savinell RF, J. Electrochem. Soc., 148(8), A905 (2001)
- Morimoto Y, Yeager EB, J. Electroanal. Chem., 444(1), 95 (1998)
- Mukerjee S, Lee SJ, Ticiannelli EA, McBreen J, Grgur BN, Markovic NM, Ross PN, Giallombardo JR, DeCastro ES, Electrochem. Solid State Lett., 2, 12 (1999)
- Novakova J, Appl. Catal. B: Environ., 30(3-4), 445 (2001)
- O'Grady WE, Hagans PL, Pandya KI, Mariche DL, Langmuir, 17, 3047 (2001)
- Park BG, Korean J. Chem. Eng., 21(4), 882 (2004)
- Ross PN, Kinoshita K, Scarpellino AJ, Stonehart P, Electroanal. Chem. Interfa. Electrochem., 59, 177 (1975)
- Russell AE, Maniguet S, Mathew RJ, Yao J, Roberts MA, Thompsett D, J. Power Sources, 96(1), 226 (2001)
- Santra AK, Goodman DW, Electrochim. Acta, 47(22-23), 3595 (2002)
- de Souza JPI, Queiroz SL, Bergamaski K, Gonzalez ER, Nart FC, J. Phys. Chem. B, 106(38), 9825 (2002)
- Teo BK, EXAFS: Basic Principles and Data Analysis, Springer-Ver-lag, New York, USA (1986)
- Thomas SC, Ren XM, Gottesfeld S, Zelenay P, Electrochim. Acta, 47(22-23), 3741 (2002)
- Umeda M, Kokubo M, Mohamedi M, Uchida I, Electrochim. Acta, 48(10), 1367 (2003)
- Viswanathan R, Hou GY, Liu RX, Bare SR, Modica F, Mickelson G, Segre CU, Leyarovska N, Smotkin ES, J. Phys. Chem. B, 106(13), 3458 (2002)
- Wei ZB, Wang SL, Yi BL, Liu JG, Chen LK, Zhou WJ, Li WZ, Xin Q, J. Power Sources, 106(1-2), 364 (2002)