화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.22, No.2, 214-218, March, 2005
The Effect of Two-Layer Cathode on the Performance of the Direct Methanol Fuel Cell
E-mail:
To reduce the effect of methanol permeated from the anode, the structure of the cathode was modified from a single layer with Pt black catalyst to two-layer with PtRh black and Pt black catalysts, respectively. The current density of the direct methanol fuel cell (DMFC) using the two-layer cathode was improved to 228 mA/cm2 compared to that (180 mA/cm2) of the DMFC using the single layer cathode at 0.3 V and 303 K. From the cyclic voltammograms (CVs), it is indicated that the amount of adsorbates on the metal catalyst in the two-layer cathode is less than that of adsorbates in the single layer cathode after methanol test. In addition, the adsorbates were removed very rapidly by electrochemical oxidation from the two-layer cathode. It is suggested from ex situ X-ray absorption near edge structure analysis that the d-electron vacancy of Pt atom in the two-layer cathode is not changed by the methanol test. Thus, Pt is not covered with the adsorbates, which agrees well with the results of CV.
  1. Arico AS, Creti P, Kim H, Mantegna R, Giordano N, Antonucci V, J. Electrochem. Soc., 143(12), 3950 (1996) 
  2. Bedrane S, Descorme C, Duprez D, Catal. Today, 73(3-4), 233 (2002) 
  3. Chang H, Kim JR, Cho JH, Kim HK, Choi KH, Solid State Ion., 148(3-4), 601 (2002) 
  4. Elliott JM, Birkin PR, Bartlett PN, Attard GS, Langmuir, 15(22), 7411 (1999) 
  5. Friedrich KA, Geyzers KP, Dickinson AJ, Stimming U, J. Electroanal. Chem., 524, 261 (2002) 
  6. Kim HK, Cho JH, Chang H, Hybrid Polymer Electrolyte to Reduce the Fuel Cross-over in DMFC, Proceeding of 201th ECS symposium, Abstract No 180, Philadelphia, USA (2002)
  7. Koch DFA, Rand DAJ, Woods R, J. Electroanal. Chem., 70, 73 (1976) 
  8. Lee SA, Park KW, Kwon BK, Sung YE, J. Ind. Eng. Chem., 9(1), 63 (2003) 
  9. Lee SJ, Mukerjee S, McBreen J, Rho YW, Kho YT, Lee TH, Electrochim. Acta, 43(24), 3693 (1998) 
  10. Lee SJ, Mukerjee S, Ticianelli EA, McBreen J, Electrochim. Acta, 44(19), 3283 (1999) 
  11. Lee CS, Yi SC, Korean J. Chem. Eng., 21(6), 1153 (2004)
  12. Ma ZQ, Cheng P, Zhao TS, J. Membr. Sci., 215(1-2), 327 (2003) 
  13. Markovic NM, Gasteiger HA, Ross PN, Jiang XD, Villegas I, Weaver MJ, Electrochim. Acta, 40(1), 91 (1995) 
  14. Miyake N, Wainright JS, Savinell RF, J. Electrochem. Soc., 148(8), A905 (2001) 
  15. Morimoto Y, Yeager EB, J. Electroanal. Chem., 444(1), 95 (1998) 
  16. Mukerjee S, Lee SJ, Ticiannelli EA, McBreen J, Grgur BN, Markovic NM, Ross PN, Giallombardo JR, DeCastro ES, Electrochem. Solid State Lett., 2, 12 (1999) 
  17. Novakova J, Appl. Catal. B: Environ., 30(3-4), 445 (2001) 
  18. O'Grady WE, Hagans PL, Pandya KI, Mariche DL, Langmuir, 17, 3047 (2001) 
  19. Park BG, Korean J. Chem. Eng., 21(4), 882 (2004)
  20. Ross PN, Kinoshita K, Scarpellino AJ, Stonehart P, Electroanal. Chem. Interfa. Electrochem., 59, 177 (1975)
  21. Russell AE, Maniguet S, Mathew RJ, Yao J, Roberts MA, Thompsett D, J. Power Sources, 96(1), 226 (2001) 
  22. Santra AK, Goodman DW, Electrochim. Acta, 47(22-23), 3595 (2002) 
  23. de Souza JPI, Queiroz SL, Bergamaski K, Gonzalez ER, Nart FC, J. Phys. Chem. B, 106(38), 9825 (2002) 
  24. Teo BK, EXAFS: Basic Principles and Data Analysis, Springer-Ver-lag, New York, USA (1986)
  25. Thomas SC, Ren XM, Gottesfeld S, Zelenay P, Electrochim. Acta, 47(22-23), 3741 (2002) 
  26. Umeda M, Kokubo M, Mohamedi M, Uchida I, Electrochim. Acta, 48(10), 1367 (2003) 
  27. Viswanathan R, Hou GY, Liu RX, Bare SR, Modica F, Mickelson G, Segre CU, Leyarovska N, Smotkin ES, J. Phys. Chem. B, 106(13), 3458 (2002) 
  28. Wei ZB, Wang SL, Yi BL, Liu JG, Chen LK, Zhou WJ, Li WZ, Xin Q, J. Power Sources, 106(1-2), 364 (2002)