화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.11, No.2, 187-193, March, 2005
Preparations of Polypropylene Membrane with High Porosity in Supercritical CO2 and Its Application for PEMFC
E-mail:
Polypropylene membrane with 71% porosity was prepared for PEMFC because of its low cost and easy handling. The pores and porosity were controlled by altering the polypropylene concentration and extraction rate of camphene from the membrane in supercritical CO2. The average pore size in the membrane was about 2~3 μm and the porosities were 80, 76, and 71% with 10, 20, and 30 polypropylene wt% respectively. The breaking points of the polypropylene membrane with 10, 20, and 30 polypropylene wt% were 0.17, 0.24, and 0.46 Kgf/mm2, respectively. The optimum conditions for the camphene extraction were performed at 45℃ and 150 bar for 10 min. The thickness of the polypropylene membrane was 70±3 μm and the composite membrane impregnated with Nafion® solution was 105±3 μm. The water uptake and ion conductivity of the polypropylene composite membrane were 25±3% and 0.0030±0.0005 S/cm, respectively.
  1. Costamagna P, Srinivasan S, J. Power Sources, 102(1-2), 253 (2001)
  2. Acres GJK, Frost JC, Hards GA, Potter RJ, Ralph TR, Thompsett D, Burstein GT, Hutchings GJ, Catal. Today, 38(4), 393 (1997)
  3. Inaba M, Uno M, Maruyama J, Tasaka A, Katakura K, Ogumi Z, J. Electroanal. Chem., 417(1-2), 105 (1996)
  4. Shim J, Ha HY, Hong SA, Oh IH, J. Power Sources, 412, 109 (2002)
  5. Ayad A, Naimi Y, Bouet J, Fauvarque JF, J. Power Sources, 130(1-2), 50 (2004)
  6. Haufe S, Stimming U, J. Membr. Sci., 185(1), 95 (2001)
  7. Ogumi Z, Kuroe T, Takehara ZI, J. Electrochem. Soc., 132, 2601 (1985)
  8. Lee KR, Chen RY, Lai JY, J. Membr. Sci., 75, 171 (1992)
  9. Kim KH, Ahn SY, Oh IH, Ha HY, Hong SA, Kim MS, Lee Y, Lee YC, Electrochim. Acta, 50, 577 (2004)
  10. Park HB, Lee YM, J. Korean Ind. Eng. Chem., 13(1), 1 (2002)
  11. Nouel KM, Fedkiw PS, Electrochim. Acta, 43(16-17), 2381 (1998)
  12. Lee HK, Park JH, Kim DY, Lee TH, J. Power Sources, 131, 200 (2004)
  13. Kwak SH, Yang TH, Kim CS, Yoon KH, Solid State Ion., 160(3-4), 309 (2003)
  14. Kim HJ, Kang YS, Kim JJ, Polym. Sci. Technol., 2(2), 81 (1991)
  15. Gopalani D, Kumar S, Jodha AS, Singh R, Khatri PK, Gopal R, J. Membr. Sci., 178(1-2), 93 (2000)
  16. Reber N, Spohr R, Wolf A, Omichi H, Tamada M, Yoshida M, J. Membr. Sci., 140(2), 275 (1998)
  17. Lee SJ, Kim MS, Chung JG, J. Korean Ind. Eng. Chem., 14(8), 1058 (2003)
  18. Shi Q, Yu MX, Zhou X, Yan YS, Wan CR, J. Power Sources, 103(2), 286 (2002)
  19. Duarte CMM, Crew M, Casimiro T, Aguiar-Ricardo A, daPonte NM, J. Supercrit. Fluids, 22, 87 (2002)
  20. Matsuyama H, Yano H, Maki T, Teramoto M, Mishima K, Matsuyama K, J. Membr. Sci., 194(2), 157 (2001)
  21. Yang MC, Perng JS, J. Membr. Sci., 187(1-2), 13 (2001)
  22. Cheng SZD, Janimak JJ, Rodriguez J, Polypropylene: Crystalline Structures of Polypropylene Homo- and Copolymers, pp.-31-35, Chapman & Hall, London (1995)
  23. Lee JS, Jeon BJ, Jung IH, Hong IK, J. Korean Ind. Eng. Chem., 6(2), 320 (1995)
  24. Bodzek M, Bohdziexwicz J, J. Membr. Sci., 60, 25 (1991)
  25. Kim JR, Kim HK, Kyong JB, J. Korean Chem. Soc., 32, 311 (1988)
  26. Kim MS, Lee SJ, J. Supercrit. Fluids, 31, 217 (2004)
  27. Guerra RM, Marin ML, Sanchez A, Jimenez A, J. Supercrit. Fluids, 22, 111 (2002)
  28. Bodzek M, Bohdziexwicz J, J. Membr. Sci., 60, 25 (1991)
  29. Davies P, Thermodynamics Functions of Gases, p. 94-95, Butterworths, London (1956)
  30. McHardy J, Sawan SP, Supercritical Fluid Cleaning, pp. 25-36, Noyes Publications, New Jersey (1997)
  31. Heitnerwirguin C, J. Membr. Sci., 120(1), 1 (1996)
  32. Choi KH, Peck DH, Kim CS, Shin DR, Lee TH, J. Power Sources, 86(1-2), 197 (2000)
  33. Cappadonia M, Erning JW, Niaki SM, Stimming U, Solid State Ion., 77, 65 (1995)