화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.43, No.1, 153-160, February, 2005
Modified Fenton Reaction과 Fenton-like Reaction을 이용한 화약류 오염 토양/지하수의 처리에 관한 연구
A Study on Remediation of Explosives-Contaminated Soil/Ground Water using Modified Fenton Reaction and Fenton-like Reaction
E-mail:
초록
본 실험은 TNT 오염토양의 효율적 제거를 위한 화학적 처리기술 개발을 목적으로 다양한 Fenton reaction 적용성에 관해 고찰하였다. 기존 Fenton reaction은 낮은 pH 요구성을 가지는 단점이 있고 천연토양은 pH에 대한 buffering capacity를 가지고 있으므로 그 적용성이 미약하였다. 이에 중성 pH에서도 효율적으로 Fenton reaction을 유도할 수 있는 modified Fenton reaction을 본 실험에 적용하였다. 또한, 천연 토양 내 다양한 철광석을 철이온 대신 사용함으로써 철슬러지의 발생의 최소화를 위한 Fenton-like reaction의 적용 가능성에 대하여 검토하여 보았다. 실험결과는 오염토양의 기존 Fenton reaction 제거효율은 약 20시간 후 pH 3에서 93%이며 반면 pH 7에서는 21%임을 보였다. 한편, TNT 오염 수용액 처리에 철이온과 5종의 chelating agent를 투입한 실험에서는 24시간 반응 후 pH 7에서 NTA-Fe의 경우가 87%로 그 효율이 가장 우수하였고 citrate-Fe 46%, EDTA-Fe 71%, oxalate-Fe 64%, acetate-Fe 37%의 각각의 제거 효율을 나타내었다. 또한, TNT 오염 수용액 처리에 3종의 철광석으로 Fenton-like reaction을 적용한 경우, pH 3에서 24시간 후 goethite 33%, hematite 40%, magnetite 40%의 처리 효율을 보였고 pH 7인 경우 goethite 28%, hematite 34%, magnetite에서는 36%의 처리효율을 보였다. 게다가, 성능이 우수한 chelating agent 3종과 2종의 철광석을 이용한 복합처리 실험에서는 magenetite 경우 pH 7에서 NTA 79%, oxalate 59%, EDTA 14%의 제거효율이 측정되었고, hematite 경우 NTA 73%, oxalate 25% 그리고 EDTA 19%의 처리효율을 얻었다. 결론적으로 철광석과 modified fenton reaction의 복합처리의 경우 처리 기간 등의 운영인자를 확보할 경우 효율적으로 TNT 오염토양에 적용될 수 있을 것으로 기대된다.
There have been large areas of soil contaminated with high levels of explosives. For this experimental work, 2,4,6-trinitrotoluene (TNT) was tested as a representative explosive contaminant of concern in both aqueous and soil samples and its removal was evaluated using three different chemical treatment methods: 1) the classical Fenton reaction which utilizes hydrogen peroxide (H2O2) and soluble iron at pH less than 3; 2) a modified Fenton reaction which utilizes chelating agents, H2O2, and soluble iron at pH 7; and 3) a Fenton-like process which utilizes iron minerals instead of soluble iron and H2O2, generating a hydroxyl radical. Using classic Fenton reaction, 93% of TNT was removed in 20 h at pH 3 (soil spiked with 300 mg/L of TNT, 3% H2O2 and 1mM Fe(III)), whereas 21% removed at pH 7. The modified Fenton reaction, using nitrilotriacetic acid (NTA), oxalate, ethylenediaminetetraacetic acid (EDTA), acetate and citrate as representative chelating agents, was tested with 3% H2O2 at pH 7 for 24 h. Results showed the TNT removal in the order of NTA, EDTA, oxalate, citrate and acetate, with the removal efficiency of 87%, 71%, 64%, 46%, and 37%, respectively, suggesting NTA as the most effective chelating agent. The Fenton-like reaction was performed with water contaminated with 100 mg/L TNT and soil contaminated with 300 mg/L TNT, respectively, using 3% H2O2 and such iron minerals as goethite, magnetite, and hematite. In the goethite-water system, 33% of TNT was removed at pH 3 whereas 28% removed at pH 7. In the magnetite-water system, 40% of TNT was removed at pH 3 whereas 36% removed at pH 7. In the hematite-water system, 40% of TNT was removed at pH 3 whereas 34% removed at pH 7. For further experiments combining the modified Fenton reaction with the Fenton-like reaction, NTA, EDTA, and oxalate were selected with the natural iron minerals, magnetite and hematite at pH 7, based on the results from the modified Fenton reaction. As results, in case magnetite was used, 79%, 59%, and 14% of TNT was removed when NTA, oxalate, and EDTA used, respectively, whereas 73%, 25%, and 19% removed in case of hematite, when NTA, oxalate, and EDTA used, respectively.
  1. Lachance B, Robidoux PY, Hawari J, Ampleman G, Thiboutot S, Sunahara GI, Mutation Research, 444(1), 25 (1999)
  2. Sabbioni G, Wei J, Liu YY, J. Chromatogr. B, 682(2), 243 (1996)
  3. Smock LA, Stoneburner DL, Clark JR, Water Res., 10(6), 537 (1982) 
  4. Schmelling DC, Gray KA, Water Res., 29(1-2), 2651 (1995) 
  5. Lang PS, Ching WK, Willberg DM, Hoffman MR, Environ. Sci. Technol., 32(20), 3142 (1998) 
  6. Peyton GR, Huang FY, Burleson JL, Glaze WH, Environ. Sci. Technol., 16(8), 448 (1982) 
  7. Hess TF, Lewis TA, Crawford RL, Katamneni S, Wells JH, Watts RJ, Water Res., 32(5), 1481 (1998) 
  8. Li ZM, Comfort SD, Shea PJ, J. Environ. Qual., 26(2), 480 (1997)
  9. Fenton HJH, J. Chem. Soc., 65, 899 (1894)
  10. Haber F, Weiss J, Proc. Roy. Sot. London. Series A, 147, 332 (1934)
  11. Haag WR, Yao CDD, Environ. Sci. Technol., 26(5), 1005 (1992) 
  12. Watts RJ, Bottenberg BC, Hess TF, Jensen MD, Teel AL, Environ. Sci. Technol., 33(19), 3432 (1999) 
  13. Watts RJ, Jones AP, Chen P, Kenny A, Water Environ. Res., 69(3), 269 (1997) 
  14. Kitajima N, Fukuzumi S, Ono Y, J. Phys. Chem., 82(13), 1505 (1978) 
  15. Watts RJ, Udell MD, Kong SH, Leung SW, Environ. Eng. Sci., 16(1), 93 (1999)
  16. Burbano AA, Dionysios DD, Richardson TL, Suidan MT, J. Environ. Eng.-ASCE, 128(7), 799 (2002)
  17. Watts RJ, Udell MD, Rauch PA, Hazard. Waste. Hazard. Mater., 7(4), 335 (1990)
  18. Watts RJ, Kong SH, Dippre M, Barnes WT, J. Hazard. Mater., 39(1), 33 (1994) 
  19. Valentine RL, Miller CM, Water Res., 29(10), 2353 (1995) 
  20. Sun Y, Pignatello JJ, J. Agric. Food Chem., 40(2), 322 (1992)