화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.16, No.1, 112-116, February, 2005
천연 고분자-칼슘 포스페이트 복합 박막 제조
Preparation of Natural Polymer-CaP Composite Films
E-mail:
초록
본 연구에서는 생체재료 표면개질의 방법으로 유-무기 박막 형성에 관한 방법을 연구하였다. Collagen의 분해 시 얻어진 gelatin을 polystyrene 배양접시에 2 h 동안 흡착시켜 gelatin 흡착층을 형성하였다. Gelatin 흡착중에 calcium과 phosphorus 과포화 이온용액을 주입하여 calcium phosphate (CaP) 박막을 제조하였다. 박막 형성 초기에 박막의 핵들이 나타나는 것을 관찰하였다. 처리시간에 따라 CaP 박막에 성장하여 배양접시의 바닥표면 전체에 형성된것을 볼 수 있었다. 형성된 gelatin/CaP 복합 박막의 특징은 3차원 공간에서 다공성이 높은 표면 구조를 형성하였다. Attenuated total reflectance Fourier transform infra-red spectroscopy (ATR-FTIR)을 이용하여 CaP 박막의 화학적 성질을 분석한 결과, 박막 형성 초기에는 무결정 형태의 박막이 형성되고, 시간이 경과됨에 따라 결정성이 약간 증가하지만, 결정성이 낮은 CaP에서 나타나는 흡수피크의 존재 등을 통하여 본 연구에서 제조한 CaP 박막은 poorly crystalline CaP 박막임을 확인하였다.
We investigated the surface modification method for the preparation of organic-inorganic hybrid composite thin film. Gelatin obtained from the decomposition of collagen was allowed to adsorb in a polystyrene tissue culture dish for 2 h to from layers of gelatin. Supersaturated ionic solution of calcium and phosphorus was injected on the gelatin adsorbed layer to form calcium phosphate thin film. During the initial period of incubation, nucleates were formed. With increase of the incubation time, CaP (calcium phosphate) thin film grew on the surface of the culture dish. The gelatin/CaP thin film displayed the highly porous three-dimensional surface structure. Attenuated, total reflectance Fourier transform, infra-red spectroscopy (ATR-FTIR) was used to analyze the chemical properties of CaP film. The analysis demonstrated that the CaP film formed at initial period of treatment appeared to be amorphous. With increase of incubation time, the crystallinity of the film was slightly increased, but the presence of the peaks for the low crystalline CaP confirmed that the CaP thin film prepared in this study was poorly crystallized.
  1. Hench LL, J. Am. Ceram. Soc., 81, 1705 (1998)
  2. Knabe C, Gildenhaar R, Berger G, Ostapowicz W, Fitzner R, Radlanski RJ, Gross U, Biomaterials, 18, 1339 (1997) 
  3. Zhang Y, Santos JD, J. Non-Cryst. Solids, 272, 14 (2000) 
  4. Bigi A, Bracci B, Panzavolta S, Biomaterials, 25, 2893 (2004) 
  5. Kim O, Choi H, J. Korean Ind. Eng. Chem., 14(3), 307 (2003)
  6. Sur SH, Jung SH, Kim SC, Kim BS, Shin YS, Lee TJ, Jang SH, Shin BY, J. Korean Ind. Eng. Chem., 14(8), 1098 (2003)
  7. Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C, Biomaterials, 24, 4833 (2003) 
  8. Varma HK, Yokogawa Y, Espinosa FF, Kawamoto Y, Nishizawa K, Nagata F, Kameyama T, Biomaterials, 20, 879 (1999) 
  9. Combes C, Rey C, Biomaterials, 23, 2817 (2002) 
  10. Hayakawa T, Yoshinari M, Kiba H, Yamamoto H, Nemoto K, Jansen JA, Biomaterials, 23, 1025 (2002) 
  11. Wu WJ, Nancollas GH, J. Colloid Interface Sci., 199(2), 206 (1998) 
  12. Kokubo T, Ito S, Huang ZT, Hayashi T, Sakka S, Kitsugi T, Yamamuro T, J. Biomed. Mater. Res., 24, 331 (1990) 
  13. Ban S, Maruno S, Biomaterials, 19, 1245 (1998) 
  14. Wen HB, deWijn JR, Cui FZ, deGroot K, J. Biomed. Mater. Res., 41, 227 (1998) 
  15. Lee WK, Ko JS, Kim HM, J. Colloid Interface Sci., 246(1), 70 (2002) 
  16. Gadaleta SJ, Paschalis EP, Betts F, Mendelsohn R, Boskey AL, Calcif. Tissue Int., 58, 9 (1996) 
  17. Wolke JGC, vanderWaerden JPCM, Schaeken HG, Jansen JA, Biomaterials, 24, 2623 (2003) 
  18. Xu J, Gilson DFR, Butler IS, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 54, 1869 (1998) 
  19. Mitchell PCH, Parker SF, Simkiss K, Simmons J, Taylor MG, J. Inorg. Biochem., 62, 183 (1996) 
  20. Liu Q, Ding J, Mante FK, Wunder SL, Baran GR, Biomaterials, 23, 3103 (2002)
  21. Torrisi L, Thin Solid Films, 237(1-2), 12 (1994)