화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.16, No.1, 101-106, February, 2005
광경화형 Dipentaerythritol 변성 폴리메타아크릴레이트의 합성과 물성
Synthesis and Properties of Photocurable Dipentaerythritol Modified Polymethacrylates
E-mail:
초록
Dipentaerythritol 유도체(DPET)와 acrylic acid를 반응하여 6관능 광경화형 변성 폴리아크릴레이트(PA-1)를 제조하였으며, dipentaerythritol 유도체(DPET)에 trimellitic anhydride와 glycidyl methacrylate를 반응시켜 12관능 광경화형 변성 폴리메타아크릴레이트(PA-2)를 제조하고 경화된 물성을 조사하였다. 관능기 수가 증가할수록 중량 평균 분자량은 증가하였으며, TGA (Thermogravimetric Analyzer)로 측정한 UV 경화필름의 열안정성은 (메타)아크릴레이트의 관능기 수가 많을수록 증가하였다. 또한 (메타)아크릴레이트의 관능기 수가 많을수록 경도, 내마모성, 인장강도가 우수하였으며, 내후성 테스트에서는 (메타)아크릴레이트의 관능기 수가 많을수록 황변 지수 값인 yellow index 값이 높아지는 결과를 보여주었다.
Photocurable modified 6 functional polyacrylate(PA-1) were prepared from dipentaerythritol derivatives (DPET) and acrylic acid, and 12 functional polymethacrylate(PA-2) were prepared from dipentaerythritol derivatives (DPET), trimellitic anhydride, and glycidyl methacrylate. And physical properties of photocurable modified poly(meth)acrylate were increased with increasing functionality of (meth)acrylate. Thermal stability of UV cured film obtained by using TGA was shifted to higher temperature as the increasing of functionality. Hardness, abrasion resistance and tensile strength of UV cured film were increased with increasing functionality of (meth)acrylate. Values of yellow index were increased with increasing functionality of (meth)acrylate.
  1. Kim YH, J. Polym. Sci. A: Polym. Chem., 36(11), 1685 (1998) 
  2. Voit B, J. Polym. Sci. A: Polym. Chem., 38(14), 2505 (2000) 
  3. Johansson M, Hult A, J. Coat. Technol., 67, 35 (1995)
  4. Huang H, Zhang J, Shi W, J. Photopolym. Sci. Tech., 10, 341 (1997)
  5. Wei HY, Kou HG, Shi WF, Yuan HY, Chen YL, Polymer, 42(16), 6741 (2001) 
  6. Johansson M, Glauser T, Rospo G, Hult A, J. Appl. Polym. Sci., 75(5), 612 (2000) 
  7. Wei HY, Lu Y, Shi WF, Yuan HY, Chen YL, J. Appl. Polym. Sci., 80(1), 51 (2001) 
  8. Kaneko R, Jikei M, Kakimoto M, High Perform. Polym., 14, 53 (2002) 
  9. Kou H, Asif A, Shi W, Eur. Polym. J., 38, 1931 (2002) 
  10. Zhu SW, Shi W, Polym. Int., 51, 223 (2002) 
  11. Huanyu W, Huiguang K, Shi W, J. Coat. Technol., 75, 939 (2003)
  12. Braithwaite M, Davidson S, Holman R, Lowe C, Oldring PKT, Salim MS, Wall C, Chemistry & Technology of UV & EB Formulation for Coatings, Inks & Paints, ed. P. K. T. Oldring, SITA Technology, London (1991)
  13. Pappas SP, Radiation Curing, Plenum Press, New York (1992)
  14. Pappas SP, UV Curing: Science and Technology, Technology Marketing Corporation, Connecticut (1983)
  15. Jung JC, Polym.(Korea), 10(6), 570 (1986)
  16. Hoyle CE, Kinstle JF, Radiation Curing of Polymeric Materials, American Chemical Society, Washigton DC (1990)
  17. Orcel G, Vanpoulle S, Barraud JY, Boniort JY, Overton B, Wire, 46, 206 (1996)
  18. Rodas AH, Bretas RES, Reggianni A, J. Mater. Sci., 21, 3025 (1986) 
  19. Moon MJ, Park JH, Lee GD, Suh CS, Kim JR, J. Korean Ind. Eng. Chem., 2(2), 175 (1991)
  20. Lim JK, Kim DK, Hwang JY, J. Korean Ind. Eng. Chem., 14(6), 818 (2003)
  21. Lim JK, Kim DK, Kim WG, J. Korean Ind. Eng. Chem., 15(2), 225 (2004)
  22. Kim YC, Roh JB, Lee BJ, J. Korean Ind. Eng. Chem., 13(6), 538 (2002)
  23. Hong JW, Park MY, Kim HK, Kim Y, Choi HK, J. Korean Ind. Eng. Chem., 11(6), 693 (2000)
  24. Hong JW, Lee HW, J. Korean Ind. Eng. Chem., 5(5), 857 (1994)
  25. Lim JK, Kim DK, Kim WG, J. Korean Ind. Eng. Chem., 15(3), 360 (2004)