화학공학소재연구정보센터
Polymer(Korea), Vol.29, No.1, 19-24, January, 2005
블렌드 조성과 상용화제가 폴리프로필렌/ABS 블렌드의 기계적 물성에 미치는 영향
Effects of Blend Composition and Compatibilizer on the Mechanical Properties of Polypropylene/Acrylonitrile-Butadiene-Styrene Blends
E-mail:
초록
폴리프로필렌(PP)을 포함한 고분자 블렌드에 상용화제를 첨가하여 이축압출기를 통해 시편을 제조하였으며, universal testing machine(UTM), lzod 충격 시험기를 사용하여 물성을 측정하였다. PP/acrylonitrile-butadiene-styrene(ABS) 블렌드의 경우, PP-g-styrene acrylonitrile(PP-g-SAN) 상용화제의 첨가에 의해 기계적 물성이 증가하였으며, ethylene-ethyl acrylate-maleic anhydride(E-EA-MAH-g-SAN) 상용화제의 첨가에 의해서 연성이 증가하는 결과를 나타내었다. PP/ABS/polycarbonate(PC)/Nylon-6,6 블렌드의 경우, ethylene glycidylmethacrylate(E-GMA) 상용화제를 0.5 phr 첨가함에 따라 충격강도가 증가하는 결과를 나타내었다. PP/ABS/PC/Nylon-6,6/poly(methyl methacrylate)(PMMA)/poly(oxymethylene)(POM)/poly(vinyl acetate)(PVC)/poly(butylenes terephthalate)(PBT) 블렌드에서 PP-g-SAN 같은 물리적 상용화제와 E-GMA 와 E-EA-MAH-g-SAN 같은 반응상용화제의 복합적인 작용으로 인해 블렌드의 기계적 물성이 증가된 결과를 나타내었다.
Polymer blends containing polypropylene (PP) with compatibilizers were prepared using twin screw extruder. Physical properties were investigated using universal test machine (UTM) and Izod impact tester. In the PP/acrylonitrilebutadiene-styrene (ABS) blends, mechanical strength was increased with the addition of PP-g-styrene acryloritrile (PP-g-SAN) compatibilizer, and the ductility was increased with the addition of ethylene-ethyl acrylate-maleic anhydride (E-EAMAH-g-SAN) compatibilizer. For the PP/ABS/ polycarbonate (PC)/Nylon-6,6 blends, impact strength was increased with the addition of ethylene glycidylmethacrylate (E-GMA compatibilizer) up to 0.5 phr. In the case of the PP/ABS/PC/Nylon-6,6/poly(methyl methacrylate) (PMMA)/poly(oxymethylene) (POM)/poly(vinyl acetate) (PVC)/poly(butylene terephthalate) (PBT) blends, mechanical properties were increased by the complex compatibilizing effects of PP-g-SAN, E-EA-MAH-g-SAN and E-GMA, respectively.
  1. Paul DR, Bucknall CB, Polymer Blends, John Wiley & Sons, New York (2000)
  2. Utracki LA, Polymer Alloys and Blends, Hansen, New York (1989)
  3. Scheirs J, Polymer Recycling, John Wiley & Sons, Chichester (1998)
  4. Brown HR, Macromolecules, 22, 2859 (1989) 
  5. Creton C, Kramer EJ, Hadziioannou G, Macromolecules, 24, 1846 (1991) 
  6. Kim S, Kim JK, Park CE, Polymer, 38(8), 1809 (1997) 
  7. Chun SB, Han CD, Macromolecules, 33(9), 3409 (2000) 
  8. Lowenhaupt B, Hellmann GP, Colloid Polym. Sci., 268, 885 (1990) 
  9. Adedeji A, Jamieson AM, Hudson SD, Macromol. Chem. Phys., 197, 2521 (1996) 
  10. Harrats C, Blacher S, Fayt R, Jerome R, Teyssie P, J. Polym. Sci. Polym. Phys. Ed., 33, 80 (1995)
  11. Heck B, Arends P, Ganter M, Kressler J, Stuhn B, Macromolecules, 30(16), 4559 (1997) 
  12. Dai CA, Jandt KD, Iyengar DR, Slack NL, Dai KH, Davidson WB, Kramer EJ, Hui CY, Macromolecules, 30(3), 549 (1997) 
  13. Noolandi J, Hong KM, Macromolecules, 17, 1531 (1984) 
  14. Kim WN, Burns CM, Macromolecules, 20, 1876 (1987) 
  15. Kim WN, Burns CM, J. Polym. Sci. Polym. Phys. Ed., 28, 1409 (1990) 
  16. Chun YS, Park J, Sun JB, Kim WN, J. Polym. Sci. B: Polym. Phys., 38(15), 2072 (2000) 
  17. Park JH, Sung WM, Hyun JC, Kim WN, Hong BK, Hong JH, Lim YS, Polym.(Korea), 26(1), 53 (2002)
  18. Dagli SS, Xanthos M, Biesenberger JA, Polym. Eng. Sci., 34(23), 1720 (1994) 
  19. Hale W, Keskkula H, Paul DR, Polymer, 40(2), 365 (1999) 
  20. Hale WR, Pessan LA, Keskkula H, Paul DR, Polymer, 40(15), 4237 (1999) 
  21. Dedecker K, Groeninckx G, Polymer, 39(21), 4985 (1998) 
  22. Al-Malaika S, Reactive Modifiers for Polymers, Chapman & Hall, London (1997)
  23. Nielsen LE, Landel RF, Mechanical Properties of Polymers and Composites, Marcel Dekker, New York (1994)
  24. Wong B, Baker WE, ANTEC, 283 (1996)
  25. Kudva RA, Keskkula H, Paul DR, Polymer, 39(12), 2447 (1998) 
  26. Sun YJ, Hu GH, Lambla M, Kotlar HK, Polymer, 37(18), 4119 (1996)