화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.8, 913-919, December, 2004
리튬용융염계 산화분위기에서 오스테나이트 합금의 고온부식거동
Hot Corrosion Behavior of Austenite Alloys in Lithium Molten Salt under Oxidation Atmosphere
E-mail:
초록
사용후핵연료 차세대관리공정은 용융염계에서 이루어지는 공정이므로 최적의 고온 용융염 취급장치 재료 선정이 필수적이다. 본 연구에서는 316LN S.S., Incoloy 800H, Inconel 600 및 Inconel 690 합금의 리튬용융염계 산화분위기에서 부식거동을 650~800 ℃, 24~312 시간범위에서 조사하였다. Inconel 600합금이 가장 우수한 내부식성을 나타내었다. 316LN S.S. 및 Incoloy 800H 합금의 부식생성물은 Cr2O3 및 FeCr2O4로, Inconel 600 합금은 Cr2O3 및 NiFe2O4로 나타났다. Inconel 690 합금의 부식생성물은 반응초기에는 Cr2O3 단상으로 나타났으나 반응시간이 증가함에 따라 Cr2O3 외에 NiFe2O4를 형성하였다. Incoloy 800H 및 Inconel 690의 부식형태는 균일부식, 316LN S.S. 는 입계부식, Inconel 600은 국부부식형태로 나타났다.
In the development of the advanced spent fuel management process based on the molten salt technology, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, the corrosion behavior of 316LN S.S., Incoloy 800H, Inconel 600 and Inconel 690 alloys in molten salt of LiCl-Li2O under oxidation atmosphere was investigated in the temperature range of 650~850 ℃ for 24~312 h. Inconel 600 alloy showed the highest corrosion resistance among the tested alloys. Corrosion products were formed Cr2O3 and FeCr2O4 on 316LN S.S. and Incoloy 800H, and also Cr2O3 and NiFe2O4 on Inconel 600. In case of Inconel 690, a single layer of Cr2O3 was formed in the early stage of corrosion and an outer layer of NiFe2O4 and inner layer of Cr2O3 were formed with increase of corrosion time. The corrosion behavior was shown uniform corrosion on Incoloy 800H and Inconel 690, intergranular corrosion on 316LN S.S., and local corrosion type on Inconel 600, respectively.
  1. Goebel JA, Pettit FS, Goward GW, Met. Trans., 4, 261 (1973)
  2. Kohl FJ, Santoro GJ, Stearns CA, Fryburg GC, Rosner DE, J. Electrochem. Soc., 126, 1054 (1979) 
  3. Rahmel A, Engell HJ, Corrosion, 18, 320 (1962)
  4. Mckee DW, Shores DA, Luthra KL, J. Electrochem. Soc., 125, 411 (1978) 
  5. Goebel JA, Pettit FS, Met. trans., 1, 1943 (1970)
  6. Spiegel M, Biedenkipf P, Grabke HJ, Corrosion Sci., 39, 1193 (1997) 
  7. Mitsushima S, Kamiya N, Ota KI, J. Electrochem. Soc., 137, 2713 (1990) 
  8. Indacochea JE, Smith JL, Litko KR, Karell EJ, Raraz AG, Oxid. Met., 55, 1 (2001) 
  9. Ishitsuka T, Nose K, Corrosion Sci., 44, 247 (2002) 
  10. Smyrl WH, Blanckburn MJ, Corrosion, 31, 370 (1975)
  11. Colom F, Bodalo A, Corrosion Sci., 12, 731 (1972) 
  12. Cherginets VL, Rebrova TP, Electrochim. Acta, 46(1), 25 (2000) 
  13. Numata H, Haruyama S, J. Jpn. Inst. Met., 42, 882 (1978)
  14. Nguyen QM, J. Power Sources, 24, 1 (1988) 
  15. Lee KK, Yoon DJ, Ghi WB, Kang CS, Lee DJ, J. Kor. Soc. for Heat Treat., 11(3), 186 (1998)
  16. Harada Y, J. Jap. Thermal Spraying Soc., 33(2), 128 (1996)
  17. Scott FH, Wood GC, Stringer J, Oxid. Met., 44, 113 (1989) 
  18. Wood GC, Stott FH, Mater. Sci. Technol., 3, 519 (1987)
  19. Ling S, Rahmel TA, Petkovic-Luton R, Oxid. Met., 40, 180 (1993)
  20. Turkdogan ET, Physical chemistry of high temperature technology, p.883, Academic Press, New York (1980)