화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.8, 860-864, December, 2004
초임계수산화에서 유기화합물들의 분해특성 비교
Comparison for Decomposition of Organic Compounds in Supercritical Water Oxidation
E-mail:
초록
등온관형반응기를 이용하여 ethylene glycols (EG), acetic acid (HOAc), methyl ethyl ketone (MEK), methanol (MeOH)을 380~500 ℃ 반응온도에서 초임계수 산화반응 비교 연구를 수행하였다. 주입 공기량은 완전연소를 위한 필요량 100%, 초기농도는 2000 ppm, 운전 압력은 250 bar로 전 실험과정에서 일정하게 유지하였다. 각각의 유기화합물에 대하여 반응온도와 반응시간에 따른 분해특성을 비교 분석하였다. 반응시간 20 s에서 EG계열화합물은 425 ℃에서 90% 분해율을 나타낸 반면 HOAc, MEK, MeOH는 500 ℃에서 90%의 분해율을 나타냈으며 분해경향은 유사하게 나타났다. EG, HOAc, MEK, MeOH에 대하여 선행 연구결과를 기초로 하여 반응속도인지를 평가하였다. 본 반응속도 연구결과는 초임계수산화공정을 이용한 유기화합물처리에 공학적 적용을 위한 지침으로 유용하게 이용될 수 있을 것으로 판단된다.
Ethylene glycols (EG), acetic acid (HOAc), methyl ethyl ketone (MEK), and methanol (MeOH) in supercritical water oxidation (SCWO) were studied in an isothermal tubular flow reactor at temperature range of 380~500 ℃. The initial inlet amount of air was 100% of stoichiometrically required amount of air for complete oxidation, the initial concentration of each compound was 2000 ppm and the operating pressure was maintained at 250 bar for all runs. Each compound was examined to observe the effect of reaction time and temperature on decay and to estimate kinetics in SCWO. The temperature dependence of oxidation in supercritical water of six organic compounds was examined over a wide temperature range for a reaction times of ca. 20 sec. The conversions of EGs were 90% at 425 ℃ while that of HOAc, MEK and MeOH was 90% at 500 ℃. Decay trends of HOAc, MEK and MeOH were very similar over a wide temperature range. The kinetic parameters of four organic compounds based upon previous studies were estimated. These kinetic information are useful as a guide for engineering applications such as the design of SCWO process for the treatment of waste organic compounds.
  1. 신석호, 원양수, 공업화학, 14(6), 744 (2003)
  2. Mishra VS, Mahajani VV, Joshi JB, Ind. Eng. Chem. Res., 34(1), 2 (1995) 
  3. Randall TL, Dietrich MJ, Environ. Prog., 4(3), 171 (1985)
  4. Modell M, Freeman HM, (Ed.), Standard handbook of hazardous waste and disposal, McGraw-Hill (1989)
  5. Smith MA, Savage PE, Environ. Sci. Technol., 29, 216 (1995) 
  6. Rice SF, Steeper RR, J. Hazard. Mater., 59, 261 (1998) 
  7. Kritzer P, Dinjus E, Chem. Eng. J., 83(3), 207 (2001) 
  8. Rice SF, Steeper RR, LaJeunesse CA, Destruction of Representative Navy Wastes Using SCWO, SAND94-8202 Report (1994)
  9. Won YS, Baek SO, Tavakoli J, Ind. Eng. Chem. Res., 40(1), 60 (2001) 
  10. 원양수, 박완식, 전관수, 한국폐기물학회지, 17(8), 914 (2000)
  11. 박완식, 원양수, 한국폐기물학회지, 17(3), 287 (2000)
  12. Lee JH, The oxidation kinetics of methane and methanol in supercritical water, ph.D Dissertation, New South Wales University, Australia (1994)
  13. 김봉진, 원양수, 한국폐기물학회지, 17(3), 287 (2000)
  14. Webley PA, Tester JW, Fundamental kinetics of methanol oxidation in supercritical water, Supercritical Fluid Science and Technology Symp. Ser. No. 406 (1989)
  15. 신석호, 원양수, 한국폐기물학회지 인쇄중.
  16. Brock EE, Oshima Y, Savage PE, Barker JR, J. Phys. Chem., 100(39), 15834 (1996) 
  17. Brock EE, Savage PE, Barker JR, Chem. Eng. Sci., 53(5), 857 (1998) 
  18. Savage PE, Yu J, Stylski N, Brock EE, J. Spercritical Fluid, 12, 141 (1998) 
  19. 심재진, 원양수, 이태진, 김선욱, 한국과학재단연구보고서 (2003)
  20. Levenspiel O, Chemical Reaction Engineering, 3rd ed. John Wiley & Son, NY (1999)
  21. Mantzavinos D, Livingston AG, Hellenbrand R, Metcalfe IS, Chem. Eng. Sci., 51(18), 4219 (1996)