화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.7, 755-759, November, 2004
악취분사식 하이드로사이클론을 이용한 폭기조 탈취법에서 암모니아 물질전달계수 평가
Estimation of the NH3 Mass Transter Coefficient in the Deodorization Process using the Odor Sparged Hydrocyclone
E-mail:
초록
악취 분사식 하이드로 사이클론과 폭기조로 이루어진 장치를 이용하여 피혁공정 내의 NH3 가스를 제거할 때 이 장치의 물질전달 계수를 구하였다. 먼저 악취 분사식 하이드로 사이클론으로 유입되는 기체와 액체의 유속비에 따라서 생성되는 미세포의 크기를 예측하고 그것에 근거해서 폭기조 내에서의 접촉 시간을 계산하였으며 가스가 제거되는 효율과 연계하여 이 장치의 전체적인 물질전달계수를 계산한 결과 0.0296 s-1였다.
The mass transfer coefficient for NH3 removal in using an odor sparged hydrocyclone and an aeration basin in the leather production process was estimated. First, the size of microbubbles was estimated with respect to gas/liquid flow rate ratio. Also, the contact time and the rising velocity of microbubbles in microbubbles in aeration basin were estimated from the size of microbubbles. Finally, the mass transfer coefficient (ky) for NH3 removal process in using an odor sparged hydrocyclone and an aeration basin in the leather production process was calculated from the size of microbubbles, the contact time and rising velocity of microbubbles. The experimental NH3 removal coefficient was 0.0296 s-1.
  1. Lelinski D, Bokotko R, Hupka J, Miller JD, Micro bubble generation in swirl flow during air-sparged hydrocyclone flotation, Minerals and Metallurgical Processing, May, 87 (1996)
  2. Miller JD, Ye Y, Froth characteristics in air-sparged hydrocycle flotation, Mineral Processing and Extrative Metallurgy Review, 5, 307 (1989)
  3. Miller JD, Ye Y, Pacquet E, Baker NW, Gopalakrishnan S, Design and Operating variables in flotation separations with the air-sparged hydrocyclone, XVI International Mineral Processing Congress (ed. Forssberg), 499 (1988)
  4. Gopalakrishnan S, Ye Y, Miller JD, Coal Preparation, 9, 169 (1991)
  5. Gopalakrishnan S, Development of the aisparged hydrocyclone for froth flotation in a centrifugal field, Ph.D dissertation U. of Utah (1991)
  6. Sullivan SL, Hardy BW, Holland CD, AIChE J., 10, 848 (1967) 
  7. Nahra HK, Kamotani Y, Chem. Eng. Sci., 55(20), 4653 (2000) 
  8. Dennis JE, Schnabel BB, Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, Englewood Cliffs, New Jersey (1983)
  9. de Billerbeck GM, Condoret JS, Fonade C, Chem. Eng. J., 72(3), 185 (1999) 
  10. Tsuchiya K, Mikasa H, Saito T, Chem. Eng. Sci., 52(21-22), 4119 (1997) 
  11. Ozbek B, Gayik S, Process Biochem., 36, 729 (2001) 
  12. Nicolella C, vanLoosdrecht CM, vanderLans RG, Heijnen JJ, Biotechnol. Bioeng., 60, 628 (1998)