화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.7, 733-737, November, 2004
유기화 층상 실리케이트/페놀 수지 나노복합재료의 열적 기계적 거동
Thermal and Mechanical Behaviors of Organically Modified Layered Silicate/Phenol Resin Nanocomposites
E-mail:
초록
본 연구에서는 용융 삽입법으로 나노복합재료를 제조하기 위해 몬모릴로나이트(montmorillonite, MMT)를 dodecyl ammonium chloride (OLS)를 이용하여 유기적으로 개질하였다. MMT와 OLS의 표면 특성은 각각 XRD와 FT-IR을 통해 알아보았고, 나노복합재료의 열안정성과 기계적 물성은 TGA, DMA 그리고 KIC를 통해 알아보았다. 실험 결과, 유기적으로 개질된 OLS의 층간이 MMT에 비하여 약 10 Å 증가한 것을 확인할 수 있었다. 또한, OLS/Phenol 나노복합재료는 MMT/Phenol 나노복합재료와 비교하여 적분 열분해 진행 온도(IPDT), 분해 활성화 에너지(Et), 저장탄성율(storage modulus) 그리고 임계응력세기 인자(KIC)값이 증가함을 확인할 수 있었다. 이는 층간이 증가한 OLS로 페놀 수지가 쉽게 삽입됨과 함께 OLS와 페놀 수지의 계면 결합력이 향상되기 때문으로 판단되어진다.
In this work, a montmorillonite (MMT) was organically modified with dodecylammonium chloride (OLS) in water at 80 ℃ to prepare th polymer nanocomposites by melt intercalation. The structure and surface properties of MMT and OLS were confirmed by FT-IR and XRD measurements, respectively. Also, the thermal stabilities and mechanical properties of the nanocomposites were examined by thermogravimetric (TGA), dynamic mechanical analyzer (DMA), and critical stress intensity factor (KIC) tests. As a result, XRD showed that the interlayer of OLS increases about 10 Å as compared to MMT. The OLS/phenolic resin nanocomposites had higher integral procedural decomposition temperature (IPDT), decomposition activation energy (Et), and storage modulus values than those of MMT/phenolic resin ones. These results explained that the phenolic resin was easily inserted in increasing of the spacing of OLS interlayer and in creasing of interfacial interaction between OLS particles and phenolic resin.
  1. Krishnamoorti R, Vaia RA, Polymer nanocomposites: synthesis, characterization, and modeling, ACS symposium series 804, 7, American Chemical Society, Washington, D. C (2002)
  2. Vaia RA, Teukolsky RK, Giannelis EP, Chem. Mater., 6, 1017 (1994) 
  3. Aranda P, Ruiz-Hitzky E, Chem. Mater., 4, 1395 (1992) 
  4. Maiti P, Batt CA, Giannelis EP, Polym. Mater. Sci. Eng., 88, 58 (2003)
  5. Bharadwaj RK, Mehrabi AR, Hamilton C, Trujillo C, Murga M, Fan R, Chavira A, Thompson AK, Polymer, 43(13), 3699 (2002) 
  6. Morgan AB, Gilman JW, J. Appl. Polym. Sci., 87(8), 1329 (2003) 
  7. VanderHart DL, Asano A, Gilman JW, Macromolecules, 34(12), 3819 (2001) 
  8. Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O, J. Polym. Sci. A: Polym. Chem., 31, 2493 (1993) 
  9. Cho JW, Paul DR, Polymer, 42(3), 1083 (2001) 
  10. Ogata N, Kawakage S, Ogihara T, J. Appl. Polym. Sci., 66(3), 573 (1997) 
  11. Moussaif N, Groeninckx G, Polymer, 44, 7899 (2003) 
  12. Wu J, Lerner MM, Chem. Mater., 5, 835 (1993) 
  13. Chow WS, Ishak ZAM, Karger-Kocsis J, Apostolov AA, Ishiaku US, Polymer, 44(24), 7427 (2003) 
  14. Park SJ, Seo DI, Nah C, J. Colloid Interface Sci., 251(1), 225 (2002) 
  15. Ma CC, Wu HD, Chu PP, Tseng HT, Macromolecules, 30(18), 5443 (1997) 
  16. Wu HD, Ma CC, Chu PP, Polymer, 38(21), 5419 (1997) 
  17. Goodman SH, Handbook of thermoset plastics: synthetic resins and polymers, 5, 18, Noyes Publications, New Jersey (1986)
  18. Alexandre M, Dubois P, Mater. Sci. Eng., 28, 1 (2000) 
  19. Ray SS, Okamoto M, Prog. Polym. Sci, 28, 1539 (2003) 
  20. Park SJ, Jang YS, J. Colloid Interface Sci., 237(1), 91 (2001) 
  21. Doyle CD, J. Appl. Polym. Sci., 5, 285 (1961) 
  22. Park SJ, Kim HC, Lee HI, Suh DH, Macromolecules, 34(22), 7573 (2001) 
  23. Horowitz HH, Metzger G, Anal. Chem., 35, 1464 (1963) 
  24. Gent AN, Wang C, J. Polym. Sci. B: Polym. Phys., 34(13), 2231 (1996) 
  25. Park SJ, Kim JS, J. Colloid Interface Sci., 232(2), 311 (2000) 
  26. Park SJ, SEO DI, Lee JR, Kim DS, J. Korean Ind. Eng. Chem., 12, 181 (2000)