화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.42, No.5, 558-563, October, 2004
NaY 제올라이트 분리막을 이용한 물/에탄올 혼합물의 투과증발
Pervaporation of Water/Ethanol Mixture through NaY Zeolite Membrane
E-mail:
초록
중류공정에 비하여 낮은 에너지를 사용하는 분리막 투과증발 공정은 물/유기물 혼합물의 분리 및 공비 혼합물의 분리에 효과적인 분리방법으로 사용될 수 있다. 제올라이트 분리막은 고분자 분리막에 비하여 열적, 기계적, 화학적 안정성이 우수하며 NaY 제올라이트 분리막은 친수성을 가지므로 물/유기물 혼합물로부터 효율적인 물의 선택적 분리에 적합하다. 본 연구에서는 NaY 제올라이트 분리막을 이용한 투과증발 막분리 공정을 이용하여 물/에탄올 혼합물에서 선택적으로 물을 분리하고자 하였다. 에탄올의 공급 농도가 증가함에 따라 총투과 플럭스는 감소하였으며 선택도도 감소하는 것을 관찰할 수 있었다. 실험 온도의 증가에 따라 총투과 플럭스는 증가하였으나 선택도는 감소하였다. 또한, 본 연구를 통하여 얻어진 NaY 제올라이트 분리막은 증류 및 PVA 계열 고분자 분리막보다 우수한 성능을 나타냄을 알 수 있었다.
Membrane pervaporation has shown many advantages over distillation for separation of water/organics mixtures since not only it requires a low energy demand but also it provides the ability to separate azeotropic mixtures. Zeolite membranes might show better thermal, mechanical, chemical stabilities than polymer membranes. Water could be effectively separated from water/organic mixtures using the NaY zeolite membrane because of its high hydrophilicity. In this study, water was separated from water/ethanol mixtures by pervaporation using NaY zeolite membrane synthesized in our laboratory. As a mole fraction of ethanol increased, a total permeation flux decreased and a separation factor also decreased. As an experimental temperature increased, a total permeation flux increased while a separation factor decreased. It was found that the NaY zeolite membrane showed better performance on water/ethanol separation than that of a distillation process or PVA polymeric pervaporation membranes.
  1. Pereira CC, Habert AC, Nobrega R, Borges CP, J. Membr. Sci., 138(2), 227 (1998) 
  2. Hofmann D, Fritz L, Paul D, J. Membr. Sci., 144(1-2), 145 (1998) 
  3. Lee YM, Polymer, 13(1), 3 (1989) 
  4. Hong YK, Hong WH, HWAHAK KONGHAK, 36(4), 524 (1998)
  5. Liu Q, Noble RD, Falconer JL, Funke HH, J. Membr. Sci., 117(1-2), 163 (1996) 
  6. Breck DW, Zeolite Molecular Sieves, John Wiley & Sons, New York (1974)
  7. Weh K, Noack M, Sieber I, Caro J, Microporous Mesoporous Mater., 54, 27 (2002) 
  8. Kita H, Fuchida K, Horita T, Asamura H, Okamoto K, Sep. Purif. Technol., 25, 261 (2001) 
  9. Kusakabe K, Kuroda T, Murata A, Morooka S, Ind. Eng. Chem. Res., 36(3), 649 (1997) 
  10. Hasegawa Y, Watanabe K, Kusakabe K, Morooka S, J. Membr. Sci., 208(1-2), 415 (2002) 
  11. Hasegawa Y, Watanabe K, Kusakabe K, Morooka S, Sep. Purif. Technol., 22-23, 319 (2001) 
  12. Hasegawa Y, Kusakabe K, Morooka S, J. Membr. Sci., 190(1), 1 (2001) 
  13. Lassinantti M, Hedlund J, Sterte J, Microporous Mesoporous Mater., 38, 25 (2000) 
  14. Reid RC, Prausnitz JM, Poling BE, Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York (1987)
  15. Noble RD, Stern SA, Membrane Separation Technology Principles and Application, Elsevier Science B. V., The Netherlands (1995)