화학공학소재연구정보센터
Langmuir, Vol.20, No.15, 6490-6500, 2004
Simple model for grafted polymer brushes
The first theories of grafted polymer brushes assumed a step profile for the monomer density. Later, the real density profile was obtained from Monte Carlo or molecular dynamics simulations and calculated numerically using a self-consistent field theory. The analytical approximations of the solutions of the self-consistent field equations provided a parabolic dependence of the self-consistent field, which in turn led to a parabolic distribution for the monomer density in neutral brushes. As shown by numerical simulations, this model is not accurate for dense polymer brushes, with highly stretched polymers. In addition, the scaling laws obtained from the analytical approximations of the self-consistent field theory are identical to those derived from the earlier step-profile- approximation and predict a vanishing thickness of the brush at low graft densities, and a thickness exceeding the length of the polymer chains at high graft densities. Here a simple model is suggested to calculate the monomer density and the interaction between surfaces with grafted polymer brushes, based on an approximate calculation of the partition function of the polymer chains. The present model can be employed for both good and poor solvents, is compatible with a parabolic-like profile at moderate graft densities, and leads to an almost steplike density for highly stretched brushes. While the thickness of the brush depends strongly on solvent quality, it is a continuous function in the vicinity of the Theta temperature. In good and moderately poor solvents, the interactions between surfaces with grafted polymer brushes are always repulsive, whereas in poor solvents the interactions are repulsive at small separations and become attractive at intermediate separation distances, in agreement with experiment. At large separations, a very weak repulsion is predicted.