화학공학소재연구정보센터
Journal of Chemical Physics, Vol.121, No.6, 2471-2482, 2004
Quantum hydrodynamics: Application to N-dimensional reactive scattering
The quantum hydrodynamic equations associated with the de Broglie-Bohm formulation of quantum mechanics are solved using a new methodology which gives an accurate, unitary, and stable propagation of a time dependent quantum wave packet [B. K. Kendrick, J. Chem. Phys. 119, 5805 (2003)]. The methodology is applied to an N-dimensional model chemical reaction with an activation barrier. A parallel version of the methodology is presented which is designed to run on massively parallel supercomputers. The computational scaling properties of the parallel code are investigated both as a function of the number of processors and the dimension N. A decoupling scheme is introduced which decouples the multidimensional quantum hydrodynamic equations into a set of uncoupled one-dimensional problems. The decoupling scheme dramatically reduces the computation time and is highly parallelizable. Furthermore, the computation time is shown to scale linearly with respect to the dimension N=2,...,100. (C) 2004 American Institute of Physics.