화학공학소재연구정보센터
Journal of Chemical Physics, Vol.121, No.3, 1474-1479, 2004
Thermally stimulated exoelectron emission from solid neon
In spite of the negative electron affinity of Ne atoms, appreciable concentrations of electrons can be trapped in solid neon layers formed by depositing the gas on a cold substrate. with concurrent electron irradiation. These are trapped at defect sites, and can be promoted into the conduction band in an annealing experiment. They can then recombine with positive charges producing vacuum ultraviolet "thermoluminescence," but can also be extracted from the solid, and detected as an. "exoelectron". current. The thermally stimulated exoelectron emission profiles of the electron current versus temperature reveal two broad features near 7.5 and 10 K., These are shown to correspond to two,distributions of electron trapping sites with slightly differing activation. energies. For the narrower, higher temperature maximum, an average activation energy of about 23 meV is deduced, in good agreement with predictions based on the, theory of electronic defect formation. (C) 2004 American Institute of Physics.