Inorganic Chemistry, Vol.43, No.9, 3005-3012, 2004
Kinetics and equilibria of the interactions of hydroxamic acids with gallium(III) and indium(III)
The thermodynamics and kinetics of the binding of Ga(III) and In(III) to two hydroxamic acids, C6H5-C(O)N(OH)H (BHA) and C6H5-C(O)N(OH)C6H5 (PBHA), have been investigated in acidic media. Spectrophotometric titrations in the UV region reveal that, with excess metal, only the chelate ML forms, whereas the concentration of the protonated species, MHL, is negligible. The thermodynamic parameters indicate that the driving force for formation of ML from MOH2+ and HL is mainly enthalpic, with entropic contributions favoring InL2+ and disfavoring GaL2+ formation. The kinetic (stopped-flow) experiments are interpreted on the basis of two parallel reaction paths both involving reaction of the undissociated ligand (HL): (a) M + HL reversible arrow MHL = ML + H where MHL is in a steady state and (b) MOH + HL reversible arrow ML + H2O. Whereas gallium binding to BHA and PBHA proceeds mainly through path b, indium binding to PBHA proceeds through both a and b paths. The rates of both the a and b steps are ligand dependent. Two alternative mechanisms are proposed. The first is based on the electronic characteristics of the ligands and is of the la type. The second, of the Id type, assumes that a considerable fraction of the ligand is unreactive owing to intramolecular hydrogen bonding (possibly including a water molecule) which blocks the reaction site. The reasons for preferring the former mechanism are discussed.