Polymer, Vol.45, No.13, 4577-4597, 2004
A thermodynamically consistent, nonlinear viscoelastic approach for modeling glassy polymers
A thermodynamically consistent nonlinear viscoelastic constitutive theory is derived to capture the wide range of behavior observed in glassy polymers, including such phenomena as yield, stress/volume/enthalpy relaxation, nonlinear stress-strain behavior in complex loading histories, and physical aging. The Helmholtz free energy for an isotropic, thermorheologically simple, viscoelastic material is constructed, and quantities such as the stress and entropy are determined from the Helmholtz potential using Rational Mechanics. The constitutive theory employs a generalized strain measure and a material clock, where the rate of relaxation is controlled by the internal energy that is likewise determined consistently from the viscoelastic Helmholtz potential. This is perhaps the simplest model consistent with the basic requirements of continuum physics, where the rate of relaxation depends upon the thermodynamic state of the polymer. The predictions of the model are compared with extensive experimental data in the following companion paper. (C) 2004 Elsevier Ltd. All rights reserved.